Navigation Links
UCSB study finds climate change is causing modifications to marine life behavior
Date:8/4/2013

(Santa Barbara, Calif.) Oceans cover 71 percent of the Earth's surface, yet our knowledge of the impact of climate change on marine habitats is a mere drop in the proverbial ocean compared to terrestrial systems. An international team of scientists set out to change that by conducting a global meta-analysis of climate change impacts on marine systems.

Counter to previous thinking, marine species are shifting their geographic distribution toward the poles and doing so much faster than their land-based counterparts. The findings were published in Nature Climate Change.

The three-year study, conducted by a working group of UC Santa Barbara's National Center for Ecological Analysis and Synthesis (NCEAS) and funded by the National Science Foundation, shows that warming oceans are causing marine species to change breeding, feeding, and migration timing as well as shift where they live. Widespread systemic shifts in measures such as distribution of species and phenology the timing of nature's calendar are on a scale comparable to or greater than those observed on land.

"The leading edge or front-line of marine species distributions is moving toward the poles at an average of 72 kilometers (about 45 miles) per decade considerably faster than terrestrial species, which are moving poleward at an average of 6 kilometers (about 4 miles) per decade," said lead author Elvira Poloczanska, a research scientist with Australia's national science agency, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Marine and Atmospheric Research in Brisbane. "And this is occurring even though sea surface temperatures are warming three times slower than land temperatures."

The report, which involved scientists from 17 institutions, including NCEAS associates Carrie Kappel and Ben Halpern and former NCEAS postdoctoral associates Mary O'Connor, Lauren Buckley, and Camille Parmesan, forms part of the Fifth Assessment Report of the United Nations Intergovernmental Panel for Climate Change (IPCC). The Geneva-based IPCC assesses scientific, technical, and socioeconomic information concerning climate change, its potential effects, and options for adaptation and mitigation.

"The effects of climate change on marine species have not been a major focus of past IPCC reports because no one had done the work to pull together all the disparate observations from around the world," said Kappel. "This study provides a solid basis for including marine impacts in the latest global accounting of how climate change is affecting our world."

Unlike previous climate change assessments, which relied heavily on terrestrial data to estimate marine impacts, the NCEAS working group scientists gathered from seven countries to assemble a large marine-only database of 1,735 changes in marine life from the global peer-reviewed literature. The biological changes were documented from time series, with an average length of 40 years of observation.

"Here's a totally different system with its own unique set of complexities and subtleties," said Camille Parmesan, professor in the Department of Integrative Biology at University of Texas at Austin. "Yet the overall impacts of recent climate change remain the same: an overwhelming response of species shifting where and when they live in an attempt to track a shifting climate.

"This is the first comprehensive documentation of what is happening in our marine systems in relation to climate change," added Parmesan. "What it reveals is that the changes occurring on land are being matched by the oceans. And far from being a buffer and displaying more minor changes, what we're seeing is a far stronger response from the oceans." Parmesan has been active in IPCC since 1997, and in her capacity as a lead author, she shared in the award of the 2007 Nobel Peace Prize to IPCC.

The research revealed telltale traces that collectively build the case for climate change causing modifications in the ocean. These fingerprints of climate change include movements of species toward the poles as ocean temperatures rise, with an average displacement up to ten times that for terrestrial species. Phytoplankton, zooplankton, and bony fish showed the largest shifts.

Researchers also found that the timing of spring events in the oceans had advanced by more than four days, nearly twice the figure for land. The strength of response varied among species, but again, the research showed the greatest response up to 11 days in advancement occurred in invertebrate zooplankton and larval bony fish.

Multiple lines of evidence supported the hypothesis that climate change is the primary driver behind the observed changes: for example, opposing responses in warm-water and cold-water species within a community and similar responses from discrete populations at the same range edge. In total, 81 percent of all observations, whether for distribution, phenology, community composition, abundance, or demography, across different populations and ocean basins were consistent with the expected impacts of climate change.


'/>"/>

Contact: Julie Cohen
julie.cohen@ia.ucsb.edu
805-893-7220
University of California - Santa Barbara
Source:Eurekalert

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. Law that regulates shark fishery is too liberal: UBC study
3. New study will help protect vulnerable birds from impacts of climate change
4. Study jointly led by UCSB researcher supports theory of extraterrestrial impact
5. BYU study: Using a gun in bear encounters doesnt make you safer
6. 15-year study: When it comes to creating wetlands, Mother Nature is in charge
7. Pycnogenol (French maritime pine bark extract) shown to improve menopause symptoms in new study
8. Crystal structure of archael chromatin clarified in new study
9. EU-funded study underlines importance of Congo Basin for global climate and biodiversity
10. University of Houston study shows BP oil spill hurt marshes, but recovery possible
11. Study demonstrates cells can acquire new functions through transcriptional regulatory network
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/7/2016)... 2016 According to a new market research report "Emotion ... Expression, Voice Recognition), Service, Application Area, End User, And Region - Global Forecast ... USD 6.72 Billion in 2016 to USD 36.07 Billion by 2021, at a ... Reading ... MarketsandMarkets Logo ...
(Date:12/6/2016)... Dec. 6, 2016 Valencell , the leading ... has seen a third consecutive year of triple digit ... in 2016 with a 360 percent increase in companies ... increase was driven by sales of its wrist and ... in its technology for hearables for fitness and healthcare ...
(Date:11/30/2016)... , Nov. 30, 2016 Not many of us realize that we ... of recovery so we need to do it well. Inadequate sleep levels have been ... blood pressure, stroke, diabetes, and even cancer. Maybe now is the best ... that could help them to manage their sleep quality? ... ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... 8, 2016 Oxford Gene Technology ... SureSeq™ NGS panel range with the launch of the SureSeq ... study of variants in familial hypercholesterolemia (FH). The panel delivers ... on a single small panel and allows customisation by ,mix ... all exons for LDLR , P C ...
(Date:12/8/2016)... , ... December 08, 2016 , ... ... in the World Technology Awards. uBiome is one of just six company finalists ... categories. , In addition to uBiome, companies nominated as finalists in this year’s ...
(Date:12/8/2016)... , Dec. 8, 2016  HedgePath Pharmaceuticals, ... that discovers, develops and plans to commercialize innovative ... shares of common stock were approved for trading ... begin trading on the OTCQX, effective today, under ... for the OTCQX market, companies must meet high ...
(Date:12/8/2016)...   Biocept, Inc . (NASDAQ: ... actionable liquid biopsy tests to improve the management ... its Target Selector™ Circulating Tumor Cell platform demonstrated ... of actionable biomarkers in patients with metastatic breast ... Cannon Research Institute (SCRI), the research arm of ...
Breaking Biology Technology: