Navigation Links
UCSB scientists make strides in vision research
Date:5/20/2011

(Santa Barbara, Calif.) New research at UC Santa Barbara is contributing to the basic biological understanding of how retinas develop. The study is part of the campus's expanding vision research.

The new studies are published in recent online versions of The Proceedings of the National Academy of Sciences (PNAS), and Investigative Ophthalmology and Visual Science (IOVS).

The scientists document how they used mice as a research model organism to show that the size of different populations of retinal neurons display wide-ranging variability among individuals. In the PNAS article, they demonstrate a nearly two-fold variation in the number of interneurons called horizontal cells. In the IOVS article, they report a conspicuous variation in the number of cone photoreceptors.

"These studies individually demonstrate the genetic determinants of nerve cell number," said Benjamin E. Reese, senior author and professor with the Neuroscience Research Institute and the Department of Psychological and Brain Sciences. "Together, they show that different nerve cell types are modulated independent of one another."

Using recombinant inbred mice, Irene Whitney, graduate student and first author of both articles, and Mary Raven, staff scientist and co-author, have been able to identify genomic loci where polymorphic genes must contribute to such natural variation. In the IOVS article, they describe this natural variation for the population of cone photoreceptors, and identify two potential causal genes that may modulate cone photoreceptor production on chromosome 10.

In the PNAS article, the scientists working will colleagues from four other U.S. institutions identify a promising candidate gene at a locus on chromosome 13, a transcription factor gene called Islet-1. This gene was confirmed to be critical for regulating horizontal cell number in genetically modified mice, in which the Islet-1 gene was rendered nonfunctional. The scientists verified that expression of this gene differs between these strains of mice during the developmental period when horizontal cells are produced. They also showed that the source of this variable expression must be due to a genetic variant within a regulatory region of the gene itself. Finally, they identified such a single nucleotide polymorphism creating an E-box, a DNA sequence bound by a family of transcription factors that have recently been shown to play a role in retinal development.

The team explained that such natural variation in the ratio of nerve cells requires a degree of plasticity in the process of forming neural connectivity, to ensure that the entire visual field is served by neural circuits that mediate our visual abilities. A series of other published and submitted studies from the Reese lab document this very plasticity in different strains of mice and in genetically modified mice.

Efforts to use genetic engineering and stem cell biology to repair diseased retinas depend upon a fuller appreciation of the developmental biology of the retina, explained Reese.

"These particular studies are just one contribution in an enormously complex process," said Reese. "Our fundamental interest is in the development the retina how you 'build' this neural tissue that, when fully mature, will mediate our visual abilities."

Vision research at UCSB has been steadily expanding in recent decades. "Since I arrived here in 1971, UCSB's vision research has grown to include dozens of scientists, in a number of labs, contributing to an explosion of research in the field," said Steven Fisher, professor emeritus in the Department of Molecular, Cellular, and Developmental Biology, and professor in the Neuroscience Research Institute.


'/>"/>

Contact: Gail Gallessich
gail.g@ia.ucsb.edu
805-893-7220
University of California - Santa Barbara
Source:Eurekalert  

Related biology news :

1. Southampton scientists to help create a sustainable energy system for the UK
2. Nottingham scientists reveal genetic wiring of seeds
3. Scientists discover switch to speed up stem cell production
4. UCSB scientists track environmental influences on giant kelp with help from satellite data
5. Scientists at the Ecological Society of Americas 2011 Annual Meeting to discuss global stewardship
6. AgriLife Research scientists work with RNA silencing and plant stem cells
7. Scientists find new class of compounds with great potential for research and drug development
8. Cancer scientists discover new way breast cancer cells adapt to environmental stress
9. Yale scientists discover new method for engineering human tissue regeneration
10. NRELs multi-junction solar cells teach scientists how to turn plants into powerhouses
11. UGA scientists discover missing links in the biology of cloud formation over the oceans
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UCSB scientists make strides in vision research
(Date:4/13/2017)... , April 13, 2017 According to a new ... Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, ... IAM Market is expected to grow from USD 14.30 Billion in 2017 ... (CAGR) of 17.3%. ... MarketsandMarkets Logo ...
(Date:4/11/2017)... , April 11, 2017 No two ... researchers at the New York University Tandon School ... Engineering have found that partial similarities between prints ... used in mobile phones and other electronic devices ... The vulnerability lies in the fact that ...
(Date:4/5/2017)...  The Allen Institute for Cell Science today announces ... portal and dynamic digital window into the human cell. ... application of deep learning to create predictive models of ... a growing suite of powerful tools. The Allen Cell ... publicly available resources created and shared by the Allen ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... States multicenter, prospective clinical study that demonstrates the accuracy of the FebriDx® ... identifying clinically significant acute bacterial and viral respiratory tract infections by testing ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... its endogenous context, enabling overexpression experiments and avoiding the use of exogenous expression ... guides is transformative for performing systematic gain-of-function studies. , This complement to ...
(Date:10/11/2017)... and LAGUNA HILLS, Calif. , Oct. 11, ... Research, London (ICR) and University of ... SkylineDx,s prognostic tool to risk-stratify patients with multiple myeloma (MM), ... nine . The University of Leeds ... funded by Myeloma UK, and ICR will perform the testing ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that ... Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital Los ...
Breaking Biology Technology: