Navigation Links
UCSB scientists discover inner workings of potent cancer drug
Date:10/14/2010

(Santa Barbara, Calif.) A potent drug derived from an evergreen tree may soon save the lives of some patients with the deadliest form of breast cancer. According to the National Cancer Institute, breast cancer will claim approximately 40,000 lives in the U.S. this year.

Scientists at UC Santa Barbara, in cooperation with scientists in the pharmaceutical industry, have discovered the mechanism by which this drug kills cancer cells. The team has isolated the drug's action in the test tube as well as in cancer cells.

The results are reported in two studies published as the cover story of the October issue of Molecular Cancer Therapeutics, authored by a team of UCSB researchers. The articles feature work performed in the laboratories of Mary Ann Jordan and Leslie Wilson, professors in UCSB's Department of Cellular, Molecular and Developmental Biology.

"This anticancer drug, called maytansine, when linked to a tumor-targeting antibody, shows promising early results in clinical trials on patients with metastatic breast cancer," said Jordan. "Although the drug is not yet approved by the FDA, current clinical trials are open to new patients. And, the drug is being tested, with good results, on other cancers, such as multiple myeloma and B-cell lymphoma."

Early clinical trials show that the drug shrank the tumors of one-third of the patients in the breast cancer study a strong result, according to the authors. The studies explain that the drug works by targeting the microtubules of cancer cells. Microtubules are the dynamic, rapidly growing and shortening protein filaments that help cells to divide and multiply.

"We discovered how the drug is taken up into the tumor cells," said Jordan. "We found out that it is metabolized by the cancer cells, inhibits the dynamics of cellular microtubules, and thus blocks the mitosis of the spindles in the cells, causing them to die."

Manu Lopus, a postdoctoral fellow at UCSB and first author of the first article, demonstrated that the maytansinoid molecules act directly on the microtubules and their component tubulin. Emin Oroudjev, first author of the second article, demonstrated the course of action of the maytansinoids after they enter the cancer cells. "When microtubules lose their natural ability to grow and shorten, they can no longer execute their key functions that are crucial to successful mitosis, thus preventing the cancer cells from dividing, and prohibiting cancer cell proliferation," said Lopus.

The drug was previously considered too dangerous to use, because of its toxicity to non-cancer cells. However, the team was able to show that modifying the anticancer drug by adding an antibody caused the drug to target only cancer cells, greatly reducing its toxicity.

The new drug, when linked with the breast cancer-targeting antibody, is named trastuzumab-DM1. DM1 is a synthetic derivative of maytansine, a molecule found in an evergreen tree in the genera Maytenus, which grows on several continents.


'/>"/>

Contact: Gail Gallessich
gail.g@ia.ucsb.edu
805-893-7220
University of California -- Santa Barbara
Source:Eurekalert  

Related biology news :

1. Jefferson scientists deliver toxic genes to effectively kill pancreatic cancer cells
2. Scientists identify novel inhibitor of human microRNA
3. Argonne scientists peer into heart of compound that may detect chemical, biological weapons
4. MU scientists go green with gold, distribute environmentally friendly nanoparticles
5. Scientists identify gene that may contribute to improved rice yield
6. Scientists discover why a mothers high-fat diet contributes to obesity in her children
7. MU scientists see how HIV matures into an infection
8. Earth scientists keep an eye on Texas
9. Thinking it through: Scientists call for policy to guide biofuels industry toward sustainability
10. Scientists identify a molecule that coordinates the movement of cells
11. Scientists Find new migratory patterns for Mediterranean and Western Atlantic bluefin tuna
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
UCSB scientists discover inner workings of potent cancer drug
(Date:6/14/2017)... June 15, 2017  IBM (NYSE: IBM ) is introducing ... event dedicated to developing collaboration between startups and global businesses, ... 15-17. During the event, nine startups will showcase the solutions ... various industries. France ... market, with a 30 percent increase in the number of ...
(Date:5/6/2017)... -- RAM Group , Singaporean based technology ... biometric authentication based on a novel  quantum-state ... perform biometric authentication. These new sensors are based on a ... Group and its partners. This sensor will have widespread ... security. Ram Group is a next generation sensor ...
(Date:4/17/2017)... 2017 NXT-ID, Inc. (NASDAQ: NXTD ) ... of its 2016 Annual Report on Form 10-K on Thursday April ... ... in the Investor Relations section of the Company,s website at ... at http://www.sec.gov . 2016 Year Highlights: ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... 2017 SomaGenics announced the receipt of a ... RealSeq®-SC (Single Cell), expected to be the first commercially ... microRNAs) from single cells using NGS methods. The NIH,s ... accelerate development of approaches to analyze the heterogeneity of ... techniques for measuring levels of mRNAs in individual cells ...
(Date:10/10/2017)... PA (PRWEB) , ... October 10, 2017 , ... ... year’s recipients of 13 prestigious awards honoring scientists who have ... presented in a scheduled symposium during Pittcon 2018, the world’s leading conference and ...
(Date:10/9/2017)... ... , ... The award-winning American Farmer television series will feature 3 Bar Biologics ... at 8:30aET on RFD-TV. , With global population estimates nearing ten billion people ... to feed a growing nation. At the same time, many of our valuable resources ...
(Date:10/9/2017)... , ... October 09, 2017 , ... ... four-tiered line of medical marijuana products targeting the needs of consumers who are ... of Kindred takes place in Phoenix, Arizona. , As operators of two successful ...
Breaking Biology Technology: