Navigation Links
UCSB researchers perform pioneering research on Type 2 diabetes

(Santa Barbara, Calif.) While legions of medical researchers have been looking to understand the genetic basis of disease and how mutations may affect human health, a group of biomedical researchers at UC Santa Barbara is studying the metabolism of cells and their surrounding tissue, to ferret out ways in which certain diseases begin. This approach, which includes computer modeling, can be applied to Type 2 diabetes, autoimmune diseases, and neurodegenerative diseases, among others.

Scientists at UCSB have published groundbreaking results of a study of Type 2 diabetes that point to changes in cellular metabolism as the triggering factor for the disease, rather than genetic predisposition. Type 2 diabetes is a chronic condition in which blood sugar or glucose levels are high. It affects a large and growing segment of the human population, especially among the obese. The team of scientists expects the discovery to become a basis for efforts to prevent and cure this disease.

The current work is based on a previous major finding by UCSB's Jamey Marth, who determined the identity of the molecular building blocks needed in constructing the four types of macromolecules of all cells when he was based at the Howard Hughes Medical Institute in La Jolla in 2008. These include the innate, genetic macromolecules, such as nucleic acids (DNA and RNA) and their encoded proteins, and the acquired metabolic macromolecules known as glycans and lipids. Marth is a professor in the Department of Molecular, Cellular, and Developmental Biology and the Biomolecular Science and Engineering Program; and holds the John Carbon Chair in Biochemistry and Molecular Biology and the Duncan and Suzanne Mellichamp Chair in Systems Biology. He is also a professor with the Sanford-Burnham Medical Research Institute in La Jolla.

"By studying the four types of components that make up the cell, we can, for the first time, begin to understand what causes many of the common grievous diseases that exist in the absence of definable genetic variation, but, instead, are due to environmental and metabolic alterations of our cells," said Marth. UCSB is the only institution studying these four types of molecules in the cells while also using computational modeling to determine their functions in health and disease, according to Marth.

The new study, published in the December 27 issue of PLOS ONE, relies on computational systems biology modeling to understand the pathogenesis of Type 2 diabetes.

"Even in the post-genomic era, after the human genome has been sequenced, we're beginning to realize that diseases aren't always in our genes that the environment is playing a major role in many of the common diseases," said Marth.

Normally, beta cells in the pancreas sense a rise in blood sugar and then secrete insulin to regulate blood glucose levels. But in Type 2 diabetes, the beta cells fail to execute this important function and blood sugar rises, a trend that can reach life-threatening levels. The researchers identified a "tipping point," or metabolic threshold, that when crossed results in the failure of beta cells to adequately sense glucose in order to properly secrete insulin.

Obesity has long been linked to Type 2 diabetes, but the cellular origin of the disease due to beta cell failure has not been described until now. "In obesity there's a lot of fat in the system," said Marth. "When the cell is exposed to high levels of fat or lipids, this mechanism starts, and that's how environment plays a role, among large segments of the population bearing 'normal' genetic variation. We're trying to understand what actually causes disease, which is defined as cellular dysfunction. Once we understand what causes disease we can make a difference by devising more rational and effective preventative and therapeutic approaches."

The research was based on a unique approach. "This project illustrates the power of systems biology; namely, how a network perspective combined with computational modeling can shed new light on biophysical circuits, such as this beta-cell glucose transport system," said co-author Frank Doyle. "It cannot be done by molecular biology alone, nor computational modeling alone; rather, it requires the uniquely interdisciplinary approach that is second-nature here at UCSB." Doyle is associate dean for research of the College of Engineering; director of UCSB's Institute for Collaborative Biotechnologies; professor of chemical engineering; and the Mellichamp Chair in Process Control.

"We are excited to bring our 20 years of expertise on Type 1 diabetes and systems biology methods to look at the networks responsible for the onset of Type 2 diabetes," said Doyle.

According to the American Diabetes Association, 8.3 percent of the U.S. population has diabetes. The disease can lead to nerve loss, blindness, and death.

The first author of the paper is Camilla Luni, who was a UCSB postdoctoral researcher at the time of the study, and is now with the University of Padova, in Italy. The research was funded by a grant from the U.S. Army Research Office to UCSB's Institute for Collaborative Biotechnologies, and a grant from the U.S. National Institutes of Health.


Contact: Gail Gallessich
University of California - Santa Barbara

Related biology news :

1. Researchers develop tool to evaluate genome sequencing method
2. Jackson Laboratory researchers provide definitive proof for receptors role in synapse development
3. Researchers discover genetic basis for eczema, new avenue to therapies
4. Thomas Jefferson University researchers discover new pathways that drive metastatic prostate cancer
5. Carin Görings remains identified by researchers at Uppsala University
6. CNIO researchers develop new databases for understanding the human genome
7. 3 Johns Hopkins researchers named AAAS Fellows
8. Leibniz Prizes 2013: DFG honors 11 outstanding researchers
9. Researchers and company from Luxembourg awarded a grant from Michael J. Fox Foundation
10. Researchers find new culprit in castration-resistant prostate cancer
11. ASU researchers propose new way to look at the dawn of life
Post Your Comments:
Related Image:
UCSB researchers perform pioneering research on Type 2 diabetes
(Date:11/19/2015)... VIEW, Calif. , Nov. 19, 2015  Based ... market, Frost & Sullivan recognizes BIO-key with the 2015 ... Leadership. Each year, Frost & Sullivan presents this award ... product line catering to the needs of the market ... the product line meets and expands on customer base ...
(Date:11/18/2015)... , November 18, 2015 ... published a new market report titled  Gesture Recognition Market ... Forecast, 2015 - 2021. According to the report, the global gesture ... is anticipated to reach US$29.1 bn by 2021, at ... North America dominated the global ...
(Date:11/17/2015)... , Nov. 17, 2015  Vigilant Solutions announces today ... its Board of Directors. --> ... recently retiring from the partnership at TPG Capital, one ... with over $140 Billion in revenue.  He founded and ... all the TPG companies, from 1997 to 2013.  In ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... 2015 Capricor Therapeutics, Inc. (NASDAQ: ... discovery, development and commercialization of first-in-class therapeutics, today announced ... is scheduled to present at the 2015 Piper Jaffray ... EST, at The Lotte New York Palace Hotel in ... . --> . ...
(Date:11/24/2015)... Nov. 24, 2015  PDL BioPharma, Inc. (PDL) (NASDAQ: ... the company,s president and chief executive officer, will present at ... week in New York City . The ... December 1, 2015 at 9:30 a.m. EST. ... the website at least 15 minutes prior to the presentation ...
(Date:11/24/2015)... ... November 24, 2015 , ... Whitehouse Laboratories is pleased to announce that ... facility will be strictly dedicated to basic USP 61, USP 62 and USP 51 ... to have complete chemistry and micro testing performed by one supplier. Management ...
(Date:11/23/2015)... with a certain type of lung nodule visible on lung ... cancer than men with similar nodules, according to a new ... the Radiological Society of North America ... Lung nodules are small masses of tissue in the lungs ... appearance on CT. Solid nodules are dense, and they obscure ...
Breaking Biology Technology: