Navigation Links
UCLA scientists find molecular switch to prevent Huntington's disease in mice

UCLA scientists have identified a molecular switch that prevents Huntington's disease from developing in mice. Published in the Dec. 24 edition of the journal Neuron, the discovery suggests a new approach to treating the genetic disorder, which ultimately leads to death in as little as 10 years.

Affecting one out of every 10,000 Americans, Huntington's progressively deprives patients of their ability to walk, speak, think clearly and swallow. People who inherit the disorder don't show symptoms until mid-life, after many have had children and unknowingly passed on the disease. Currently, there is no effective treatment to prevent the onset or slow the progression of the disease.

Huntington's is caused by a mutation in the polyglutamine (polyQ) region of a very large protein called huntingtin. Because huntingtin is found everywhere in the body, it is a challenge to study, and the function and mechanism behind the mutant protein still remain elusive.

"It's unclear how the mutant protein causes age-related and progressive loss of brain cells in patients with Huntington's disease," said senior study author X. William Yang, associate professor of psychiatry and biobehavioral sciences at the Semel Institute of Neuroscience and Human Behavior at UCLA. "We explored whether regions of the protein besides the polyQ mutation play a role in the development of the disorder."

Collaborators Joan Steffan and Leslie Thompson, of the University of California, Irvine, showed that two amino acids near the beginning of the huntingtin protein can be modified by a chemical process called phosphorylation, which cells use to control protein function after the proteins have been made.

To test whether phosphorylation could influence Huntington's disease in a living animal, Yang's laboratory generated two mouse models to carry the polyQ HD mutation and modified the two amino acids in two different ways one to mimic phosphorylation, the other to prevent it.

The researchers found that preventing phosphorylation caused the mice to develop symptoms suggestive of Huntington's disease in humans. Mimicking phosphorylation, however, did not cause the disorder.

These results in mice have striking parallels to experiments performed by collaborator Ron Wetzel, of the University of Pittsburgh, who found that mimicking phosphorylation of a toxic fragment of mutant huntingtin reduces the protein's tendency to form clumps.

A separate UC Irvine study by Steffan and Thompson also suggests that phosphorylation of mutant huntingtin may help cells dispose of the toxic form of mutant huntingtin. Combined, these studies suggest new directions of research to understand the roles of huntingtin misfolding, clumping and clearance in the disease mechanism.

"Our study identified a critical molecular switch which lies next to the polyQ mutation in the huntingtin protein," Yang said. "We were surprised to find that subtle modification of only two amino acids in this very large protein can prevent the onset of disease. This finding suggests an exciting new avenue to develop therapeutics for Huntington's disease."


Contact: Elaine Schmidt Haber
University of California - Los Angeles

Related biology news :

1. Turtles Christmas journey tracked by scientists
2. Scientists isolate new antifreeze molecule in Alaska beetle
3. Scientists use nanosensors for first time to measure cancer biomarkers in blood
4. Scripps Research scientists crack mystery of proteins dual function
5. Scientists identify natural anti-cancer defenses
6. Princeton scientists find way to catalog all that goes wrong in a cancer cell
7. The pitch of blue whale songs is declining around the world, scientists discover
8. Stand Up to Cancer funds high-risk/high-reward cancer research by 13 young scientists
9. Scientists discover gene module underlying atherosclerosis development
10. Scientists think killer petunias should join the ranks of carnivorous plants
11. Scientists gain new understanding of disease-causing bacteria
Post Your Comments:
(Date:10/29/2015)... YORK , Oct. 29, 2015 ... technology, announced a partnership with 2XU, a global ... to deliver a smart hat with advanced bio-sensing ... and other athletes to monitor key biometrics to ... the strategic partnership, the two companies will bring together ...
(Date:10/26/2015)... PUNE, India , October 26, ... --> --> ... Forecasts 2015 to 2021 as well ... Analysis 2015-2019 research reports to its ... . ...
(Date:10/23/2015)... and GOLETA, California , October ... conference, BIOPAC and SensoMotoric Instruments (SMI) announce a mobile ... tracking data captured during interactive real-world tasks ... play integration of their established wearable solutions for eye ... synchronize gaze behavior captured with SMI Eye Tracking ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... November 24, 2015 , ... ... year and one of the premier annual events for pharmaceutical manufacturing: 2015 Annual ... November 2015, where ISPE hosted the largest number of attendees in more than ...
(Date:11/24/2015)... , Nov. 24, 2015  Clintrax Global, Inc., a worldwide ... Carolina , today announced that the company has set a ... a 391% quarter on quarter growth posted for Q3 of 2014 ... and Mexico , with the establishment of ... December 2015. --> United Kingdom and ...
(Date:11/24/2015)... , ... November 24, 2015 , ... This fall, global ... competitive events in five states to develop and pitch their BIG ideas to improve ... each state are competing for votes to win the title of SAP's Teen Innovator, ...
(Date:11/24/2015)... November 24, 2015 SHPG ) announced today ... the Piper Jaffray 27 th Annual Healthcare Conference in ... 2015, at 8:30 a.m. EST (1:30 p.m. GMT). --> ... Officer, will participate in the Piper Jaffray 27 th Annual ... on Tuesday, December 1, 2015, at 8:30 a.m. EST (1:30 p.m. ...
Breaking Biology Technology: