Navigation Links
UCLA researchers solve decade-old mystery
Date:2/26/2008

Environmentally friendly hydrogen gas fueled vehicles can dramatically reduce greenhouse gas emissions and lessen the countrys dependence on sources of fossil fuel. Though several hydrogen vehicles exist on the market today, there is still much room for improvement in the way that hydrogen is stored on-board the vehicle. With current technologies, hydrogen gas storage tanks have to be as large as or larger than the trunk of a car to carry enough gas to travel only one to two hundred miles.

While liquid hydrogen is denser and takes up less space, it is very expensive and difficult to produce. It also reduces the environmental benefits of hydrogen vehicles. Widespread commercial acceptance of these vehicles will require finding the right material that can store hydrogen gas at high volumetric and gravimetric densities in reasonably sized light-weight fuel tanks.

Researchers at the UCLA Henry Samueli School of Engineering and Applied Science, with the use of molecular dynamics simulations, have solved a decade old mystery that could one day lead to commercially practical designs of storage materials for use in hydrogen gas fueled vehicles. The study appears on the Proceedings of the National Academy of Sciences (PNAS) web site on February 27.

In 1997, it was discovered that adding a small amount of titanium to a well-known metal hydride, sodium alanate, not only lowers the temperature of hydrogen release from the material but also allows for an easy refueling and storage of high density hydrogen at reasonable pressures and temperatures. In fact, the weight percent of stored hydrogen was instantly doubled in comparison with other inexpensive materials.

Nobody really understood what the titanium did. The chemical processes and the mechanisms were really a mystery, said Vidvuds Ozolins, associate professor of material science and engineering, a member of the California NanoSystems Institute, and lead author of the study.

With computers and the power of basic physics, chemistry and quantum mechanics, Ozolins group decided to take a step back and analyze the sodium alanate in its pure form, without added titanium. The group analyzed the atomic processes occurring in the material and what happens to the chemical bond between the hydrogen and the material at the temperatures of hydrogen release. The computation gave the researchers information that would have been very difficult to obtain experimentally.

The computation suggested a reaction mechanism that is essential for the extraction of hydrogen from the material which involves diffusion of aluminum ions within the bulk of the hydride. By comparing the calculated activation energies to the experimentally determined values, Ozolins group found that aluminum diffusion is the key rate limiting process in materials catalyzed with titanium. Thus, titanium facilitates processes in the material that are essential for turning on this mechanism and extracting hydrogen at lower temperatures.

This method and this knowledge can now be used to analyze other materials that would make for better storage systems than sodium alanate. We are still on the fundamental end of the study. But if we can figure this out computationally, the people with the technology in engineering can figure out the rest, said Hakan Gunaydin, a UCLA graduate student in Ozolins lab and another one of the studys authors.

Sodium alanate in itself is a prototypical complex hydride with a reasonable storage density and very good kinetics. Hydrogen goes in and comes out quickly but it wouldnt be practical for a car simply because it doesnt contain enough hydrogen. So thats why we are so interested in understanding how the hydrogen comes out, what happens exactly and how we can take this to other materials, said Ozolins.

What Ozolins group, along with UCLA chemistry and biochemistry professor Kendall Houk, also a member of the California NanoSystems Institute, hopes to do now is to apply the methods and lessons learned to those materials that would make for a commercially practical hydrogen gas storage system. They hope their findings will one day facilitate the design and creation of an affordable and environmentally friendly hydrogen vehicle.


'/>"/>

Contact: Wileen Wong Kromhout
wwkromhout@support.ucla.edu
310-206-0540
University of California - Los Angeles
Source:Eurekalert

Related biology news :

1. Rats on islands disrupt ecosystems from land to sea, researchers find
2. Iowa State researchers help piece together the corn genomes first draft
3. U-M researchers release most detailed global study of genetic variation
4. LSU researchers challenge analyses on sustainability of Gulf fisheries
5. Researchers probe a DNA repair enzyme
6. Oregon researchers study widespread areas of low oxygen off northwest coast
7. Stanford researchers say living corals thousands of years old hold clues to past climate changes
8. Stanford researchers make first direct observation of 3-D molecule folding in real time
9. Dartmouth researchers find the root of the evolutionary emergence of vertebrates
10. Researchers decode genetics of rare photosynthetic bacterium
11. Researchers decode genetics of rare photosynthetic bacteria
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... , April 28, 2016 First quarter ... (139.9), up 966% compared with the first quarter of 2015 ... totaled SEK 589.1 M (loss: 18.8) and the operating margin was ... (loss: 0.32) Cash flow from operations was SEK 249.9 ... 2016 revenue guidance is unchanged, SEK 7,000-8,500 M. The ...
(Date:4/15/2016)... 15, 2016  A new partnership announced today ... underwriting decisions in a fraction of the time ... and high-value life insurance policies to consumers without ... With Force Diagnostics, rapid testing (A1C, Cotinine and ... (blood pressure, weight, pulse, BMI, and activity data) ...
(Date:3/31/2016)... BOCA RATON, Florida , March 31, 2016 /PRNewswire/ ... LEGX ) ("LegacyXChange" or the "Company") ... presentation for potential users of its soon to be ... The video ( https://www.youtube.com/channel/UCyTLBzmZogV1y2D6bDkBX5g ) will also ... by the use of DNA technology to an industry ...
Breaking Biology News(10 mins):
(Date:5/23/2016)... and LONDON , May 23, 2016 ... Could See Frontage Boost Efficiency by 40% - Frontage ... - Frontage Enforce Quality, Compliance and Traceability Within the Bioanalytical ... with labs in the United States and ... to be deployed across its laboratory facilities. In addition to ...
(Date:5/23/2016)... ... 23, 2016 , ... Foresight Institute , a leading ... for the 2015 Foresight Institute Feynman Prizes. , These prestigious prizes, named ... for experiment and the other for theory in nanotechnology. Prof. Markus J. Buehler, ...
(Date:5/20/2016)... CA (PRWEB) , ... May 20, 2016 , ... The ... 10 of its most experienced veterinary clients have treated over 100 of their own ... edge technology to provide the highest level of care for their patients. , ...
(Date:5/20/2016)... NC (PRWEB) , ... May 20, 2016 , ... Korean ... suggesting that it may offer a new way to treat the disease. Surviving Mesothelioma ... it now. , Scientists from several Korean institutions based their mesothelioma study on ...
Breaking Biology Technology: