Navigation Links
UCLA researchers engineer bacteria to turn carbon dioxide into liquid fuel
Date:12/10/2009

Global climate change has prompted efforts to drastically reduce emissions of carbon dioxide, a greenhouse gas produced by burning fossil fuels.

In a new approach, researchers from the UCLA Henry Samueli School of Engineering and Applied Science have genetically modified a cyanobacterium to consume carbon dioxide and produce the liquid fuel isobutanol, which holds great potential as a gasoline alternative. The reaction is powered directly by energy from sunlight, through photosynthesis.

The research appears in the Dec. 9 print edition of the journal Nature Biotechnology and is available online.

This new method has two advantages for the long-term, global-scale goal of achieving a cleaner and greener energy economy, the researchers say. First, it recycles carbon dioxide, reducing greenhouse gas emissions resulting from the burning of fossil fuels. Second, it uses solar energy to convert the carbon dioxide into a liquid fuel that can be used in the existing energy infrastructure, including in most automobiles.

While other alternatives to gasoline include deriving biofuels from plants or from algae, both of these processes require several intermediate steps before refinement into usable fuels.

"This new approach avoids the need for biomass deconstruction, either in the case of cellulosic biomass or algal biomass, which is a major economic barrier for biofuel production," said team leader James C. Liao, Chancellor's Professor of Chemical and Biomolecular Engineering at UCLA and associate director of the UCLADepartment of Energy Institute for Genomics and Proteomics. "Therefore, this is potentially much more efficient and less expensive than the current approach."

Using the cyanobacterium Synechoccus elongatus, researchers first genetically increased the quantity of the carbon dioxidefixing enzyme RuBisCO. Then they spliced genes from other microorganisms to engineer a strain that intakes carbon dioxide and sunlight and produces isobutyraldehyde gas. The low boiling point and high vapor pressure of the gas allows it to easily be stripped from the system.

The engineered bacteria can produce isobutanol directly, but researchers say it is currently easier to use an existing and relatively inexpensive chemical catalysis process to convert isobutyraldehyde gas to isobutanol, as well as other useful petroleum-based products.

In addition to Liao, the research team included lead author Shota Atsumi, a former UCLA postdoctoral scholar now on the UC Davis faculty, and UCLA postdoctoral scholar Wendy Higashide.

An ideal place for this system would be next to existing power plants that emit carbon dioxide, the researchers say, potentially allowing the greenhouse gas to be captured and directly recycled into liquid fuel.

"We are continuing to improve the rate and yield of the production," Liao said. "Other obstacles include the efficiency of light distribution and reduction of bioreactor cost. We are working on solutions to these problems."


'/>"/>

Contact: Matthew Chin
mchin@support.ucla.edu
310-206-0680
University of California - Los Angeles
Source:Eurekalert

Related biology news :

1. Berkeley Lab researchers participate in Homeland Security study of subway airflow
2. Hebrew University, American researchers show trigger to stem cell differentiation
3. Carnegie Mellon researchers receive grant
4. Researchers finds hidden sensory system in the skin
5. Researchers demonstrate nanoscale X-ray imaging of bacterial cells
6. Texas AgriLife researchers helping
7. Stopping MRSA before it becomes dangerous is possible, Sandia/UNM researchers find
8. VAI researchers find long awaited key to creating drought resistant crops
9. UGA researchers lead team in discovery involving devastating freshwater fish parasite, Ich
10. Nervy research: Researchers take initial look at ion channels in a model system
11. Yerkes researchers create first transgenic prairie voles
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:7/20/2017)... Delta (NYSE: DAL ) customers now can use ... Reagan Washington National Airport (DCA). ... Delta launches biometrics to board aircraft at Reagan Washington ... Delta,s biometric boarding pass experience that ... integrated into the boarding process to allow eligible Delta SkyMiles Members who ...
(Date:5/23/2017)... 2017  Hunova, the first robotic gym for the rehabilitation and functional ... in Genoa, Italy . The first 30 robots will ... USA . The technology was developed and patented at ... IIT spin-off Movendo Technology thanks to a 10 million euro investment from ... click: ...
(Date:4/24/2017)... , April 24, 2017 ... and partner with  Identity Strategy Partners, LLP (IdSP) ... "With or without President Trump,s March 6, 2017 ... Terrorist Entry , refugee vetting can be instilled with ... resettlement. (Right now, all refugee applications are suspended ...
Breaking Biology News(10 mins):
(Date:8/15/2017)... ... August 15, 2017 , ... Any expert in stem cell research or ... for more than half a century. Despite their essential roles in human health ... known that molecular tags developed for this purpose also tag other, more abundant, non-stem ...
(Date:8/14/2017)... Ca (PRWEB) , ... August 14, 2017 , ... ... poorly characterized and performing antibodies. Key researchers in the antibody community have recently ... characterization and consistency for antibodies in the laboratory. , The team ...
(Date:8/11/2017)... Calif. (PRWEB) , ... August 11, 2017 , ... Algenist ... plant collagen-based formulation unlocking collagen like never before. , Collagen is the key ... firsts to market with Liquid Collagen™, which include: , ...
(Date:8/10/2017)... ... 2017 , ... Each year in the United States more than 300,000 people ... independent lifestyle and, even worse, the one-year mortality rate is high, ranging from 12 ... of California Davis Medical Center (Sacramento) and Second Xiangya Hospital of the Central-South University ...
Breaking Biology Technology: