Navigation Links
UCLA researchers develop way to strengthen proteins with polymers
Date:5/21/2012

Proteins are widely used as drugs insulin for diabetics is the best known example and as reagents in research laboratories, but they react poorly to fluctuations in temperature and are known to degrade in storage.

Because of this instability, proteins must be shipped and stored at regulated temperatures, resulting in increased costs, and sometimes must be discarded because their "active" properties have been lost. Manufacturers of protein drugs will generally add substances known as excipients, like polyethylene glycol, to the proteins to prolong their activity.

In a new study published in the Journal of the American Society of Chemistry (DOI: 10.1021/ja2120234), investigators from the UCLA Department of Chemistry and Biochemistry and the California NanoSystems Institute at UCLA (CNSI) describe how they synthesized polymers to attach to proteins in order to stabilize them during shipping, storage and other activities. The study findings suggest that these polymers could be useful in stabilizing protein formulations.

The polymers consist of a polystyrene backbone and side chains of trehalose, a disaccharide found various plants and animals that can live for long periods with very little or no water. An example many people will recognize is Sea- Monkeys the 'novelty aquarium pet' introduced in 1962. SeaMonkeys can be purchased as kits that contain a white powder; when water is added, the powder becomes small shrimp whose long tails are said to resemble those of monkeys.

Trehalose is known to stabilize proteins when water is removed, and as a result, it is an additive in several protein drug formulations approved by the Food and Drug Administration (FDA) to treat cancer and other conditions.

"Our polymers were synthesized by a controlled radical polymerization technique called reversible addition-fragmentation chain transfer (RAFT) polymerization in order to have end groups that can attach to proteins to form what is called a protein-polymer conjugate," said Heather Maynard, a UCLA associate professor of chemistry and biochemistry and a member of the CNSI. "We found that the polymers significantly stabilized the protein we used lysozyme better to lyophilization (freeze-drying, in which water is removed from the protein) and to heat than did the protein with no additives."

The research team found that attaching the polymer covalently to the protein that is, forming a protein-polymer conjugate stabilized the protein to lyophilization better than adding the non-conjugated polymer at the same concentration.

The team also found that the polymers stabilized lysozyme significantly better than the currently used excipients trehalose and polyethylene glycol, depending on the stress and conditions used.

The Maynard research group is currently exploring the use of their polymer as a stabilizer by attaching it or adding it to FDAapproved protein therapeutics. In addition, they are investigating the mechanism of how the polymer stabilizes proteins.

The research team included Rock J. Mancini and Juneyoung Lee, both graduate students of chemistry and biochemistry in the Maynard research group.


'/>"/>

Contact: Jennifer Marcus
jmarcus@cnsi.ucla.edu
310-267-4839
University of California - Los Angeles
Source:Eurekalert

Related biology news :

1. Tufts Medical Center researchers finds marker in premies saliva predicts readiness to feed by mouth
2. Researchers aim to assemble the tree of life for all 2 million named species
3. Dartmouth researchers are learning how exercise affects the brain
4. Nottingham researchers lead worlds largest study into pre-eclampsia
5. Begin early: Researchers say water with meals may encourage wiser choices
6. Researchers look to relatives for clues in quest to develop sources of bioenergy
7. WSU researchers say genes and vascular risk modify effects of aging on brain and cognition
8. KIT researchers succeed in realizing a new material class
9. Sloppy shipping of human retina leads IU researchers to discover new treatment path for eye disease
10. UCSB researchers find that less is more, for female cowbirds
11. Researchers discover first gene linked to missing spleen in newborns
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted ... quarter of 2015 The gross margin was 49% (27) ... the operating margin was 40% (-13) Earnings per share ... operations was SEK 249.9 M (21.2) , Outlook   ... M. The operating margin for 2016 is estimated to ...
(Date:4/19/2016)... , UAE, April 20, 2016 ... implemented as a compact web-based "all-in-one" system solution for ... biometric fingerprint reader or the door interface with integration ... modern access control systems. The minimal dimensions of the ... readers into the building installations offer considerable freedom of ...
(Date:4/14/2016)... 2016 BioCatch ™, the ... announced the appointment of Eyal Goldwerger as ... Goldwerger,s leadership appointment comes at a time of ... deployment of its platform at several of the world,s ... discerns unique cognitive and physiological factors, is a winner ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... (PRWEB) , ... June 23, 2016 , ... ... is exhibiting at the Pennsylvania Convention Center and will showcase its product’s latest ... ClinCapture will also be presenting a scientific poster on Disrupting Clinical Trials in ...
(Date:6/23/2016)... , ... June 23, 2016 , ... ... new line of intelligent tools designed, tuned and optimized exclusively for Okuma CNC ... in Chicago. The result of a collaboration among several companies with expertise in ...
(Date:6/23/2016)... 2016 ReportsnReports.com adds 2016 ... its pharmaceuticals section with historic and forecast data ... more. Complete report on the Cell ... 15 companies and supported with 261 tables and ... . The Global Cell Culture Media ...
(Date:6/22/2016)... 22, 2016 Research and Markets has announced ... report to their offering. ... from $29.3 billion in 2013. The market is expected to grow ... 2015 to 2020, increasing from $50.6 billion in 2015 to $96.6 ... during the forecast period (2015 to 2020) are discussed. As well, ...
Breaking Biology Technology: