Navigation Links
UCLA-led research team finds that bacteria can stand up and walk
Date:10/8/2010

Many drug-resistant infections are the result of bacterial biofilms, structured aggregates of bacteria that live on surfaces and that are extremely resistant to environmental stresses. These biofilms impact human health in many ways cystic fibrosis, for example, is a disease in which patients die from airway bacterial biofilm infections that are invulnerable to even the most potent antibiotics.

Now, UCLA researchers and their colleagues have found that during the initial stages of biofilm formation, bacteria can actually stand upright and "walk" as part of their adaptation to a surface.

"Bacteria exist in two physiological states: the free-swimming, single-celled planktonic state and the surface-mounted biofilm state, a dense, structured, community of cells governed by their own sociology," said Gerard Wong, a professor of bioengineering at the UCLA Henry Samueli School of Engineering and Applied Science and at the California NanoSystems Institute at UCLA.

"Bacteria in biofilms are phenotypically different from free-swimming bacteria even though they are genomically identical. As part of their adaptation to a surface and to the existence of a community, different genes are turned up and down for bacteria in biofilms, leading to drastically different behavior," he said.

In the study, which appears in the current issue of the journal Science, Wong and his research group describe the new surface adaptation the "walking" motility mechanism, which was observed in Pseudomonas aeruginosa, a biofilm-forming pathogen partly responsible for the lethal infections in cystic fibrosis.

What enables this upright walking are appendages called type IV pili, which function as the analog of legs. What's more, walking allows P. aeruginosa to move with trajectories optimized for surface exploration, so that they can forage more effectively. The upright orientation is also the first step in surface detachment for bacteria.

"We've shown that vertical orientation plays a critical role in key life-cycle events: vertically oriented bacteria can more readily detach from surfaces, allowing them to spread and disperse effectively," said Jacinta Conrad, a former postdoctoral researcher with Wong's group and an assistant professor of chemical and biomolecular engineering at the University of Houston. "Our unique contribution is to directly relate single-cell behavior to specific events in the bacterial life cycle and thereby show how single-cell motility influences biofilm morphology."

The research team was able to develop a series of search engines and computer programs that use particle-tracking algorithms to quantitatively analyze time-lapse microscopy movies of bacterial motion on surfaces.

"Previously, graduate students had to look at cells manually and then laboriously track them from one frame to the next," Wong said. "Our computational approach allows us to increase the volume of data analyzed 100,000-fold and to perform the necessary analysis in a few hours rather than a few months.

"Moreover, we make sense of this mountain of information using search enginebased approaches. This represents a big advance in the way microscopes are used."

The work was conducted in collaboration with a research group at the University of Notre Dame led by Joshua Shrout, an assistant professor in the department of civil engineering and geological sciences and at the Eck Institute for Global Health.

"P. aeruginosa infections are unfortunately the leading cause of death for individuals with cystic fibrosis," Shrout said. "In addition to these lung infections, P. aeruginosa also causes skin, eye and gastrointestinal infections. As we learn how P. aeruginosa colonizes surfaces, perhaps we can develop better methods to treat these infections."

"One of the most exciting factors of this work for me is the potential for widespread impact," Conrad said. "Biofilm formation is ubiquitous in human health and also in a variety of industrial settings. Biofouling due to biofilm formation increases the hydrodynamic drag on ships, leading to increased fuel consumption, and also contributes to increased costs in water treatment, oil recovery and food processing. Controlling biofilm formation will therefore allow us to reduce biofouling-related problems across a wide range of industries."


'/>"/>

Contact: Wileen Wong Kromhout
wwkromhout@support.ucla.edu
310-206-0540
University of California -- Los Angeles
Source:Eurekalert

Related biology news :

1. Notre Dame researcher helps discover walking properties of bacteria
2. In Parkinsons disease, brain cells abandon mitochondria, researchers report
3. MIT researchers develop a better way to see molecules at work in living brain cells
4. US invested $139 billion in health research in 2009
5. Brown Institute for Brain Science marks decade of research impact
6. Scripps Research scientists develop novel test that identifies river blindness
7. Scripps researchers, UCSD chemists to create center devoted to chemistrys influence on climate
8. New fisheries system will save about $20 million, Iowa State University researchers find
9. UNH researcher helps identify key reproductive hormone in oldest vertebrate
10. The world is full of darkness, reflected in the physiology of the human retina, Penn researchers say
11. FSU researchers examine how bacteria become resistant to antibiotics
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/13/2017)... Jan. 13, 2017 Sandata Technologies, LLC, ... the homecare industry, including Electronic Visit Verification™ (EVV™), ... Justin Jugs, as Senior Vice President of Product ... years of homecare experience to Sandata, where he ... plans to align Sandata,s suite of solutions with ...
(Date:1/12/2017)... , Jan. 12, 2017  New research undertaken by ... of the future.  1,000 participants were simply asked which office ... which we may consider standard issue.  Insights on what ... were also gathered from futurists and industry leaders including ... James Canton .  Some of these ...
(Date:1/11/2017)... , Jan. 11, 2017 Intoxalock, a leading ... the release of its patent-pending calibration device. With this ... perform calibrations, securely upload data logs and process repairs ... customer. "Fighting drunk driving through the application ... public at large, but also for the customer who ...
Breaking Biology News(10 mins):
(Date:2/16/2017)... -- UCHealth ( Aurora, Colorado ) becomes ... patient management. In addition to optimizing care coordination for ... lung, UCHealth looks to improve provider workflow by decreasing ... Stephanie Brown, RN , Thoracic Nurse Navigator, says, ... Excel spreadsheet, which was extremely arduous and susceptible to ...
(Date:2/16/2017)... N.J. , Feb. 16, 2017  Champions Oncology, ... in the development and sale of advanced technology solutions ... oncology drugs, today announced the addition of new cohorts ... These new models will expand Champions, product line ... head and neck cancer, AML, and non-small cell lung ...
(Date:2/16/2017)... 2017  Windtree Therapeutics, Inc. (Nasdaq: ... aerosolized KL4 surfactant therapies for respiratory diseases, announced ... showed that aerosolized KL4 surfactant reduced lung inflammation ... animal model. The Company believes that these preclinical ... that supports the role of KL4 surfactant as ...
(Date:2/16/2017)... , Feb. 16, 2017 Paradigm Diagnostics ... B financing, adding an additional $3M from New Sciences ... Verde Venture Partners and other strategic partners at the ... further accelerating commercial adoption of their flagship Paradigm Cancer ... expanding the Paradigm cancer registry. Dr. ...
Breaking Biology Technology: