Navigation Links
UCLA engineers demonstrate use of proteins as raw material for biofuels, biorefining
Date:3/7/2011

Two types of raw materials are currently used for biorefining and biofuel production: carbohydrates and lipids. Biofuels like ethanol are derived from carbohydrate raw materials such as sugars and lignocellulose, while biodiesels are derived from another raw material, lipid-rich vegetable oil.

In a study published online March 6 in the journal Nature Biotechnology, researchers at the UCLA Henry Samueli School of Engineering and Applied Science demonstrate for the first time the feasibility of using proteins one of the most abundant biomolecules on earth as a significant raw material for biorefining and biofuel production.

"Proteins had been completely ignored as a potential biomaterial because they've been thought of mainly as food. But in fact, there are a lot of different proteins that cannot be used as food," said James C. Liao, the Chancellor's Professor of Chemical and Biomolecular Engineering at UCLA and senior author of the study. "These proteins were overlooked as a resource for fuel or for chemicals because people did not know how to utilize them or how to grow them. We've solved these problems."

"This research is the first attempt to utilize protein as a carbon source for energy production and biorefining," said Kwang Myung Cho, a UCLA Engineering research scientist and an author of the study. "To utilize protein as a carbon source, complex cellular regulation in nitrogen metabolism had to be rewired. This study clearly showed how to engineer microbial cells to control their cellular nitrogen metabolism."

In nutrient-rich conditions, proteins are the most abundant component in fast-growing microorganisms. The accumulation rate of proteins is faster than that of any other raw materials, including cellulose or lipids. In addition, protein does not have the recalcitrance problems of lignocellulose or the de-watering problem of algal lipids. Protein biomass can be much more easily digested to be used for microorganisms than cellulosic biomass, which is very difficult to break down.

Further, cellulose and lipids don't contribute to the process of photosynthesis. But proteins are the major component of fast-growing photosynthetic microorganisms.

The challenge in protein-based biorefining, the researchers say, lies in the difficulties of effectively converting protein hydrolysates to fuels and chemicals.

"Microorganisms tend to use proteins to build their own proteins instead of converting them to other compounds," said Yi-xin Huo, a UCLA postdoctoral researcher and lead author of the study. "So to achieve the protein-based biorefining, we have to completely redirect the protein utilization system, which is one of the most highly regulated systems in the cell."

Liao's team created an artificial metabolic system to dump reduced nitrogen out of cells and tricked the cells to degrade proteins without utilizing them for growth. Proteins contain both ammonia and carbon; Liao's team took away the ammonia and recycled it back for the growth of the algae they worked with. Algae with rich ammonia fertilizers grow quickly and were used only as a carrier to assimilate carbon dioxide and produce protein, which results in more CO2 fixation and growth. With this strategy, expensive photo-bioreactors can be eliminated.

"Today, nitrogen fertilizers used in agriculture and biofuel production have become a major threat to many of the world's ecosystems, and the nitrogen-containing residuals in biofuel production can eventually turn into nitrous oxide, which is about 300 times worse than CO2 as a greenhouse gas," Liao said. "Our strategy effectively recycles nitrogen back to the biofuel production process, thus approaching nitrogen neutrality.

"Growing algae to produce protein is like putting the interest back into the principal," he said.

According to Liao's team, the culture area needed to produce 60 billion gallons of biofuels (30 percent of the United States' current transportation fuel) based on the new technology could be as little as 24,600 square kilometers equivalent to 1.9 percent of the agricultural land in the U.S.

"Developing large-scale systems is our next step," Huo said. "Harvesting of the protein biomass economically is a bottleneck of advancing our technology."


'/>"/>

Contact: Wileen Wong Kromhout
wwkromhout@support.ucla.edu
310-206-0540
University of California - Los Angeles
Source:Eurekalert

Related biology news :

1. Civil engineers to honor NJITs Priscilla Nelson for research
2. UCLA bioengineers discover how particles self-assemble in flowing fluids
3. Virginia Tech engineers introduce thermotherapy as a chemotherapy alternative
4. Bioengineers provide adult stem cells with simultaneous chemical, electrical and mechanical cues
5. Nanoengineers aim to grow tissues with functional blood vessels
6. Rutgers-Camden professor engineers E. coli to produce biodiesel
7. Undergrad engineers research everything from water quality to wildfires this summer
8. Stanford engineers use rocket science to make wastewater treatment sustainable
9. Penn bioengineers create simulator to test blood platelets in virtual heart attacks
10. Clemson engineers to create model underground energy-storage facility
11. UH engineers to improve test for cardiovascular disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/8/2016)... MANCHESTER, United Kingdom , Jan. 8, 2016 ... innovative sensor-based diagnostic products, today announced the closing of a ... existing investors.  Proceeds from the financing will be used to ... hand-held device for detecting early-stage pressure ulcers. ... after receiving CE Mark approval. The device,s introduction has ...
(Date:1/7/2016)... , Jan. 7, 2016 This BCC Research ... for biometric technologies and devices, identifying newer markets and ... various types of biometric devices. Includes forecast from 2015 ... Identify newer markets and explore the expansion of the ... Examine each type of biometric technology, determine its current ...
(Date:1/7/2016)... -- A United States District Court in Illinois ... to interpret a biometric privacy statute in a decision ... photo website Shutterfly brought by the law firm Carey Rodriguez ... SHUTTERFLY, INC.; and THISLIFE, INC ( N.D. Ill ., ... Illinois Biometric Privacy Act by collecting and scanning face ...
Breaking Biology News(10 mins):
(Date:2/4/2016)... N.J. , Feb. 4, 2016  CytoSorbents ... immunotherapy leader commercializing its flagship CytoSorb® blood filter ... surgery patients around the world, announced that CEO ... present at the Source Capital Group,s 2016 Disruptive ... update on the company.  Conference ...
(Date:2/4/2016)... -- ContraVir Pharmaceuticals, Inc. (NASDAQ: CTRV ), a ... targeted antiviral therapies, announced today that it will present ... held February 8-9, 2016, at the Waldorf Astoria New ... Healthcare Conference, taking place in New York ... Sapirstein , Chief Executive Officer of ContraVir, will provide ...
(Date:2/4/2016)... ... 2016 , ... Franz Inc. , an early innovator ... been recognized As “ Best in Semantic Web Technology - USA & Leader ... it’s our priority to showcase prominent professionals who are excelling in their industry ...
(Date:2/3/2016)...   ViaCyte, Inc ., a leading, privately-held ... cell-derived islet replacement therapy for the treatment of ... that ViaCyte and Janssen Biotech, Inc., one of ... have agreed to consolidate the assets of the ... ViaCyte with an exclusive license to all BetaLogics ...
Breaking Biology Technology: