Navigation Links
UCLA engineer gets $4 million from Department of Energy to convert CO2 to liquid fuel using electricity

James C. Liao, Chancellor's Professor of Chemical and Biomolecular Engineering at the UCLA Henry Samueli School of Engineering and Applied Science, has been awarded $4 million over three years to develop a method for converting carbon dioxide into liquid fuel isobutanol using electricity.

The grant was awarded by the Department of Energy's Advanced Research Projects AgencyEnergy (ARPA-E), a new agency that promotes and funds projects to develop transformational technologies to reduce the country's dependence on foreign energy, curb energy-related emissions and improve energy efficiency across all sectors of the U.S. economy.

As global climate change has heightened the need to reduce emissions of carbon dioxide, a greenhouse gas produced by burning fossil fuels, and to fundamentally change the way in which we produce and use energy, Liao has been at the forefront of efforts to develop new methods for producing environmentally friendly biofuels.

In the last couple of years, he has received widespread attention for his work producing more efficient biofuels by genetically modifying E. coli bacteria, and recently, for modifying cyanobacterium to consume carbon dioxide or CO2 to produce isobutanol a reaction powered by energy from sunlight, though photosynthesis.

Now, Liao and his team would like to use electricity as the energy source instead. The process would store electricity in liquid fuels that can be used as high octane gasoline substitutes.

According to Liao, direct synthesis of biofuels using photosynthetic microorganisms such as algae and cyanobacteria is promising but requires a large surface area for light capture. And though solar photovoltaic cells are more efficient for energy conversion, the electricity produced faces a storage problem.

"Our proposed process will provide one of the most feasible and economical methods to convert electricity to liquid fuel in a scalable manner," Liao said. "The immediate impact is that it solves the electricity storage problem by converting the electrical energy to liquid fuels that are fully compatible with the current infrastructure for distribution, storage and utilization."

In the long run, the process can be extended to utilize solar energy via electricity or electron mediators to directly produce liquid fuel usable in internal combustion engines.

Liao's grant was part of $106 million awarded under the American Recovery and Reinvestment Act to 37 research projects that focus on three critical areas: electrofuels (making biofuels from electricity), better batteries for electrical energy storage in transportation, and zero-carbon coal (innovative materials and processes for advanced carbon capture technologies).


Contact: Wileen Wong Kromhout
University of California - Los Angeles

Related biology news :

1. Bioengineers at University of Pennsylvania devise nanoscale system to measure cellular forces
2. Innovative civil engineering application promises cleaner waters
3. Princeton engineers develop low-cost recipe for patterning microchips
4. UCR engineers to develop new tool to measure how environmental exposures affect health
5. UCI and CODA Genomics collaborate to re-engineer yeast for biofuel production
6. Boston University biomedical engineers find chink in bacterias armor
7. CU researcher engineers sorghum that grows in poisonous soils
8. A step toward tissue-engineered heart structures for children
9. Institution of Chemical Engineers chooses Elsevier as publishing partner
10. Green skies: Engineers work may reduce jet travels role in global warming
11. Cystic fibrosis patients may breathe easier, thanks to bioengineered antimicrobials
Post Your Comments:
(Date:11/10/2015)... LONDON , Nov. 10, 2015 /PRNewswire/ ... segmented on the basis of product, type, ... segments included in this report are consumables, ... this report are safety biomarkers, efficacy biomarkers, ... in this report are diagnostics development, drug ...
(Date:11/9/2015)... 2015 ... "Global Law Enforcement Biometrics Market 2015-2019" ... ) has announced the addition ... Market 2015-2019" report to their offering. ... ) has announced the addition of ...
(Date:11/4/2015)... New York , November 4, 2015 ... to a new market report published by Transparency Market ... Share, Growth, Trends and Forecast 2015 - 2022", the global ... of US$ 30.3 bn by 2022. The market is ... the forecast period from 2015 to 2022. Rising security ...
Breaking Biology News(10 mins):
(Date:11/27/2015)... Pittsburgh, PA (PRWEB) , ... November 27, 2015 ... ... Technical Program that includes over 2,000 technical presentations offered in symposia, ... analytical chemistry and applied spectroscopy, covers a wide range of applications such as, ...
(Date:11/26/2015)... CHESHAM , England , November 26, ... Lightpoint Medical, an innovative medical device company specializing in ... Euro grant from the European Commission as part of the ... enabling the company to carry out a large-scale clinical trial ... -->      (Logo: , ...
(Date:11/25/2015)... November 25, 2015 2 nouvelles études ... les différences entre les souches bactériennes retrouvées dans ... des êtres humains . Ces recherches  ouvrent une ... la prise en charge efficace de l,un des ... les chats .    --> 2 nouvelles ...
(Date:11/25/2015)... 25, 2015  Neurocrine Biosciences, Inc. (Nasdaq: NBIX ... and CEO of Neurocrine Biosciences, will be presenting at ... New York . .   ... approximately 5 minutes prior to the presentation to download ... presentation will be available on the website approximately one ...
Breaking Biology Technology: