Navigation Links
UCI and CODA Genomics collaborate to re-engineer yeast for biofuel production
Date:9/4/2007

Irvine, Calif., Sept. 4, 2007 Scientists from UC Irvine and CODA Genomics are partnering on new research aimed at turning a common strain of yeast used in the production of beer, wine and bread into an efficient producer of ethanol.

Researchers at UCIs Institute for Genomics and Bioinformatics (IGB) are using CODA Genomics patented gene-protein-production algorithms to tweak the genetic structure of a yeast strain called Saccharomyces. It has the potential to efficiently turn switchgrass, hemp, corn, wood and other natural materials into ethanol a clean and environmentally safe fuel that could help meet the nations increasing thirst for green energy.

The $1.67 million collaboration, which began Sept. 1, is funded by CODA Genomics, an Orange County synthetic biology company, and a UC Discovery Grant that provides matching funds for innovative industry-university research partnerships.

Saccharomyces produces ethanol as a byproduct when it ferments sugars found in plant materials. In its natural state, the yeast processes the glucose that grows in these materials, but does not contain the necessary enzymes to process other sugars, such as xylose and arabinose, that are components of biomass. The bio-engineered version of the yeast will produce enzymes that can help it digest these and other sugars with equal ease, maximizing its ethanol production.

Scientists believe the bio-engineered yeast could use 80-90 percent of the sugars in biomass for ethanol production, up from about 20 percent with current technologies.

Ethanol could be an answer to the U.S.s dependence on fossil fuels, said G. Wesley Hatfield, principal investigator on the grant, a UCI professor emeritus and co-founder of CODA Genomics. While there currently are yeast strains that can make ethanol from biomass, the existing process is very expensive and inefficient. Were trying to build a better yeast strain one that can produce more ethanol from the same amount of biomass by breaking it down naturally.

The multidisciplinary research project involves UCI researchers in the schools of information and computer sciences, engineering and medicine, as well as researchers at CODA Genomics, which spun off in 2005 from UCI research.

CODAs patented technology uses computer algorithms to design synthetic genes that self-assemble easily and generate protein in large amounts. This allows genes that occur naturally in certain organisms to be re-engineered to meet the needs of different organisms. When applied to Saccharomyces, the technology modifies the yeast so it can manufacture enzymes to break down a wider variety of sugars.

Even when the yeast is producing the necessary enzymes, inefficiencies in its metabolic pathways can slow the process. Pierre Baldi, IGB director and one of the projects co-principal investigators, is computationally optimizing key enzymes to increase their efficiency. With computer algorithms, he is engineering compatibility of these key enzymes with various co-factors the small molecules that help the enzymes work.

Given the current energy crisis and global warming concerns, we are particularly pleased with this award, said Baldi, who is also Chancellors Professor in UCIs Donald Bren School of Information and Computer Sciences.

Also involved in the multidisciplinary project are researchers from IGBs Computational Biology Research Laboratory (CBRL) in the California Institute for Telecommunications and Information Technology, and the labs of professors Suzanne Sandmeyer (biological chemistry) and Nancy Da Silva (biochemical engineering).

CBRL scientists perform the computation, gene design and gene assembly of the yeast proteins using CODAs technology. Sandmeyer, a yeast molecular biologist, inserts the proteins into the yeast genome, ensuring the enzymes stability and their ability to function. Da Silva, a chemical engineer, ensures that fermentation conditions are optimal to maximize ethanol production.

The CODA technology is already showing commercial success in therapeutic protein markets, said CODA Genomics CEO Robert Molinari. Now we are going to apply the unique approach to a large national problem.


'/>"/>

Contact: Anna Lynn Spitzer
aspitzer@uci.edu
949-824-3317
University of California - Irvine
Source:Eurekalert

Related biology news :

1. New comparative toxicogenomics database
2. Measuring the impact of post-genomics on Mediterranean populations
3. Advancements In Genomics Foster Deep Sea Discoveries
4. Ariadne Genomics Announces the Release of PathwayStudio?Central, Client-Server Software for Biological Pathway Analysis
5. Owl genomics presents a HEPATOCHIP for diagnosis of non-alcoholic steatohepatitis
6. Enlisting genomics to understand flu evolution
7. Drawing with DNA: Bioart illuminates genomics
8. Genomics researchers discover protein deficit that causes drug toxicity
9. Study reveals genomics of inflammation from severe injury
10. NIH launches comprehensive effort to explore cancer genomics
11. Environmental metagenomics diagnosing extreme environments, tapping opportunities for clean energy
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/2/2016)... 2, 2016 The Department of Transport ... the 44 million US Dollar project, for the , ... including Personalization, Enrolment, and IT Infrastructure , to ... production and implementation of Identity Management Solutions. Numerous renowned international ... Decatur was selected for the most compliant ...
(Date:6/1/2016)... YORK , June 1, 2016 ... Technology in Election Administration and Criminal Identification to Boost ... to a recently released TechSci Research report, " Global ... By Region, Competition Forecast and Opportunities, 2011 - 2021", ... 24.8 billion by 2021, on account of growing security ...
(Date:5/16/2016)... May 16, 2016   EyeLock LLC , a ... the opening of an IoT Center of Excellence in ... expand the development of embedded iris biometric applications. ... of convenience and security with unmatched biometric accuracy, making ... aside from DNA. EyeLock,s platform uses video technology to ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , the ... today the Clinical Reach Virtual Patient Encounter CONSULT module which enables both ... physician and clinical trial team. , Using the CONSULT module, patients and physicians can ...
(Date:6/27/2016)... -- Liquid Biotech USA , Inc. ... Research Agreement with The University of Pennsylvania ("PENN") ... patients.  The funding will be used to assess ... outcomes in cancer patients undergoing a variety of ... to support the design of a therapeutic, decision-making ...
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a leader in ... Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research professionals, Mosio ... practical tips, tools, and strategies for clinical researchers. , “The landscape of how ...
Breaking Biology Technology: