Navigation Links
UC Santa Barbara researchers develop synthetic platelets

(Santa Barbara, Calif.) Synthetic platelets have been developed by UC Santa Barbara researchers, in collaboration with researchers at Scripps Research Institute and Sanford-Burnham Institute in La Jolla, Calif. Their findings are published in the journal Advanced Materials in a paper titled "Platelet Mimetic Particles for Targeting Thrombi in Flowing Blood."

Platelets are the components of blood that allow it to prevent excessive bleeding and to heal wounds. The unique physical and biochemical properties of platelets play an important role in performing these complex biological tasks. Smaller than red blood cells, platelets are flexible, disk-shaped cells that are 2-4 micrometers in size.

"Upon further optimization and exhaustive testing, the synthetic platelets could be used for various biomedical applications," said the paper's first author Nishit Doshi, a researcher from the Department of Chemical Engineering.

The challenge Doshi and colleagues faced was to develop a comparably sized particle roughly 1/50th of the diameter of a strand of hair that had key structural properties of real platelets.

"In order to mimic the size, shape, and surface functionality of natural platelets synthetically, polymeric particles are particularly attractive," said Doshi. "However, polymeric particles are orders of magnitude more rigid than platelets."

To solve the problem of flexibility, researchers at UC Santa Barbara used a polymeric "template" a core upon which layers of proteins and polyelectrolytes were deposited, layered, and crosslinked to create a stable synthetic platelet-shaped particle. The rigid polymeric core was then dissolved to give the particle the desired flexibility. The particle was then coated with proteins found on the surface of activated natural platelets or damaged blood vessels, a procedure performed by the researchers at Scripps Research Institute.

These synthetic platelets may be used to not only perform the typical functions of human platelets; but may also be used to carry imaging agents to identify damaged blood vessels or to deliver drugs that dissolve blood clots.

The synthetic platelets represent the latest and one of the most advanced in a line of efforts over the last century to mimic platelet function. While clotting factors and platelets from outside donors are used widely to halt bleeding, immune system responses and thrombosis have been issues. Non-platelet-derived substitutes have also received attention; however, said Doshi, these do not physically resemble the physical features of natural platelets.

"This development is a significant milestone in the field of biomimetic materials," said Samir Mitragotri, professor of chemical engineering, director of UC Santa Barbara's Center for Bioengineering, and an author of the paper. "By capitalizing on our capabilities in engineering materials, with the expertise in platelet biology that exists in Professor Ruggeri's laboratory, our synthetic platelets combine unique physical and biological attributes that mimic natural platelets." Biomaterials research is one of the principal focus areas in UCSB's Center for BioEngineering. In 2009, Doshi and colleagues in the Mitragotri laboratory developed synthetic red blood cells.

"This work is a marvelous demonstration of the power of material synthesis applied to medical problems. The synthetic platelets can have profound implications in wound-healing problems for trauma and wounds arising in both battlefield situations and during surgery," said Frank Doyle, director of UCSB's Institute of Collaborative Biotechnologies and the Associate Dean of Research of UCSB's College of Engineering.

Other authors of the study include Jennifer N. Orje, Blanca Molins, and Zaverio Ruggeri from Scripps Research Institute; and Jeffrey Smith from Sanford-Burnham Medical Research Institute.


Contact: Sonia Fernandez
University of California - Santa Barbara

Related biology news :

1. UC Santa Cruz builds national data center for cancer genome research
2. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
3. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
4. UC Santa Barbara researchers new study may lead to MRIs on a nanoscale
5. University of California Santa Barbara study reveals how gas, temperature controlled bacterial response to Deepwater Horizon spill
6. Argentinas Santa Fe government reducing lead ammunition for sports hunters
7. New data published in Nature Genetics demonstrate that tiny LNA-based compounds developed by Santaris Pharma A/S inhibit entire disease-associated microRNA families
8. Marine Protected Areas Federal Advisory Committee meets Nov. 2-3 in Santa Barbara
9. Santa Fe homeowners weigh in on landscape preferences
10. Researchers study effect of yuma desalting plant on Cienega de Santa Clara
11. CNIC and Banco Santander set up research project on early cardiovascular risk factors
Post Your Comments:
Related Image:
UC Santa Barbara researchers develop synthetic platelets
(Date:11/19/2015)... -- Although some 350 companies are actively involved in molecular ... according to Kalorama Information. These include Roche Diagnostics, Hologic, Abbott ... of the 6.1 billion-dollar molecular testing market, according to ... Diagnostic s .    ... one company and only a handful of companies can ...
(Date:11/17/2015)... Paris , qui ... Paris , qui s,est tenu du ... leader de l,innovation biométrique, a inventé le premier scanner ... sur la même surface de balayage. Jusqu,ici, deux scanners ... les empreintes digitales. Désormais, un seul scanner est en ...
(Date:11/12/2015)... 2015  A golden retriever that stayed healthy despite ... has provided a new lead for treating this muscle-wasting ... Institute of MIT and Harvard and the University of ... Cell, pinpoints a protective gene that ... effects. The Boston Children,s lab of Lou Kunkel ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... 2015 --> ... "Oligonucleotide Synthesis Market by Product & Services (Primer, Probe, ... DNA, RNAi), End-User (Research, Pharmaceutical & Biotech, Diagnostic Labs) ... market is expected to reach USD 1,918.6 Million by ... CAGR of 10.1% during the forecast period. ...
(Date:11/24/2015)... 24, 2015 SHPG ) announced today that ... Piper Jaffray 27 th Annual Healthcare Conference in ... at 8:30 a.m. EST (1:30 p.m. GMT). --> SHPG ... will participate in the Piper Jaffray 27 th Annual Healthcare ... Tuesday, December 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). ...
(Date:11/24/2015)... CITY , Nov. 24, 2015 /PRNewswire/ - ... "Company") announced today that the remaining 11,000 post-share ... Share Purchase Warrants (the "Series B Warrants") subject ... were exercised on November 23, 2015, which will ... Shares.  After giving effect to the issuance of ...
(Date:11/24/2015)... ... November 24, 2015 , ... InSphero AG, the leading supplier of ... has promoted Melanie Aregger to serve as Chief Operating Officer. , Having ... management team and was promoted to Head of InSphero Diagnostics in 2014. ...
Breaking Biology Technology: