Navigation Links
UC Riverside biochemists devise method for bypassing aluminum toxicity effects in plants

RIVERSIDE, Calif. Aluminum toxicity, a global agricultural problem, halts root growth in plants, severely limiting agricultural productivity for more than half of the world's arable land.

For many years, scientists have puzzled over how toxic levels of aluminum damage the growing root. The popular understanding is that aluminum binds to several targets in the root system, blocking cell division, damaging DNA, and ultimately interrupting plant growth.

Now, working on the model plant Arabidopsis, a team of UC Riverside biochemists has determined that it is not aluminum toxicity that is directly responsible for inhibiting plant growth. The researchers identified a factor in plant cells, called AtATR, that functions as a built-in DNA surveillance system for alerting the plant of damage from excess aluminum and shutting down growth.

The researchers' experiments showed that AtATR can be manipulated to greatly enhance aluminum tolerance, resulting in plants whose roots can grow normally in soils that contain toxic levels of aluminum.

Study results appear in the Oct. 14 issue of Current Biology.

"Plants actively monitor aluminum-dependent damage through AtATR," said Paul Larsen, an associate professor of biochemistry and the lead author of the study. "But by breaking this assessment mechanism in a plant growing in soil with high aluminum content, we were able to stimulate plant growth again because the plant was no longer able to sense the damage aluminum caused. In other words, by bypassing this growth checkpoint, plants are not able to sense the effects of aluminum; they continue to grow even in an aluminum-toxic environment that is highly inhibitory to a normal Arabidopsis plant."

The research, which gives scientists new insights into how aluminum tolerance works in plants, offers a new strategy for engineering crop plants that can tolerate growth in aluminum-toxic environments, increasing crop production in areas that otherwise could not sustain agriculture.

"Dr. Larsen's work is a significant breakthrough in our understanding of how aluminum toxicity inhibits root growth," said Leon Kochian, a professor of plant biology at Cornell University, who was not involved in the research. "What he has shown, using an elegant combination of genetics, molecular biology and physiology, is that aluminum causes DNA damage in the growing root tip. The cells of this region have a mechanism to monitor this damage and shut down cell division and thus, root growth."

Larsen explained that a root tip has a "quiescent center" that houses stem cells master cells, maintained throughout the life of the root, that develop into cell types and tissues. Aluminum toxicity results in the loss of these stem cells, and consequently cell division, bringing growth to a halt.

"Knocking off AtATR's functioning maintains the quiescent center," said Larsen, who joined UCR's Department of Biochemistry in 2000. "In our study, we broke AtATR throughout the plant. But if we can break this factor only in the root tip, the plant will not sense aluminum's damage to the root. The root then continues to grow and we regain productivity."

The researchers' experiments involved introducing random mutations throughout the genome of Arabidopsis and screening for those roots that can grow in the presence of high levels of aluminum.

A silvery-white metal, aluminum is the most abundant metallic element in the Earth's crust. Never found in the metallic form in nature, it occurs instead in compounds.

Next, Larsen's lab will work on identifying other factors in plants that detect DNA damage. His lab also plans to induce the AtATR mutation into crop plants such as tomato and corn to increase their aluminum tolerance.


Contact: Iqbal Pittalwala
University of California - Riverside

Related biology news :

1. UC Riverside biologist receives prestigious MacArthur Fellowship
2. UC-Riverside partners with Chinese university to address Chinas environmental problems
3. Chemicals used as fire retardants could be harmful, UC-Riverside researchers say
4. UC Riverside to host conference on stricter air quality standards for Southern California
5. UC Riverside bioengineer receives high honor from chemical engineers
6. Tahitian vanilla originated in Maya forests, says UC Riverside botanist
7. UC Riverside botanist to study role of plants in southern Californias drought
8. Biochemists reveal details of mysterious bacterial microcompartments
9. Biochemists manipulate fruit flavor enzymes
10. Bioengineers at University of Pennsylvania devise nanoscale system to measure cellular forces
11. UF researchers devise way to calculate rates of evolution
Post Your Comments:
(Date:11/19/2015)... , Nov. 19, 2015  Although some 350 ... is dominated by a few companies, according to Kalorama ... own 51% of the market share of the 6.1 ... The World Market for Molecular Diagnostic s . ... "The market is still controlled by one company and ...
(Date:11/17/2015)... LIVERMORE, Calif. , Nov. 17, 2015  Vigilant ... has joined its Board of Directors. ... Vigilant,s Board after recently retiring from the partnership at ... owning 107 companies with over $140 Billion in revenue.  ... performance improvement across all the TPG companies, from 1997 ...
(Date:11/12/2015)... LONDON , Nov. 11, 2015   ... and reliable analytical tools has been paving the ... and qualitative determination of discrete analytes in clinical, ... sensors are being predominantly used in medical applications, ... and environmental sectors due to continuous emphasis on ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... KUALA LUMPUR, Malaysia , Nov. 24, 2015 ... the global contract research organisation (CRO) market. The ... to result in lower margins but higher volume ... With increased capacity and scale, however, margins in ... Contract Research Organisation (CRO) Market ( ...
(Date:11/24/2015)... ... November 24, 2015 , ... ... metabolism. But unless it is bound to proteins, copper is also toxic to ... researchers at Worcester Polytechnic Institute (WPI) will conduct a systematic study of copper ...
(Date:11/24/2015)... ... November 24, 2015 , ... This fall, global software solutions leader ... five states to develop and pitch their BIG ideas to improve health and wellness ... competing for votes to win the title of SAP's Teen Innovator, an all-expenses paid ...
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna ... announced today that the remaining 11,000 post-share consolidation ... Purchase Warrants (the "Series B Warrants") subject to ... exercised on November 23, 2015, which will result ... After giving effect to the issuance of such ...
Breaking Biology Technology: