Navigation Links
UC Davis researchers aid effort to sequence the complex wheat genome
Date:11/28/2012

Intent on developing wheat varieties with higher yields and enhanced nutritional content, researchers at the University of California, Davis, have teamed up with scientists at nine other institutions in an attempt to sequence the wheat genome.

Results from that endeavor, led by researchers at the U.K.-based Biotechnology and Biological Sciences Research Council, will be reported Nov. 29 in the journal Nature.

"This work moves us one step closer to a comprehensive and highly detailed genome sequence for bread wheat, which along with rice and maize is one of the three pillars on which the global food supply rests," said Jan Dvorak, professor of plant sciences at UC Davis and a study co-author.

"The world's population is projected to grow from 7 billion to 9 billion by 2050," he said. "It is clear that, with no new farmable land available to bring into cultivation, we must develop higher-yielding varieties of these three cereals to meet the growing global demand for food."

The bread wheat genome is especially complex because bread wheat originated from three ancient grass species. Its genome is, therefore, a composite of three genomes and is five times the size of the human genome.

Wheat geneticists have historically designated the genomes of those parent grasses as the A, B and D genomes, each containing a similar set of genes. As a result, most bread wheat genes exist in triplicate.

To aid the sequence assembly of bread wheat, Dvorak and the UC Davis researchers have worked with scientists at the U.S. Department of Agriculture's Agricultural Research Service and with scientists at two other U.S. institutions on sequencing of the genome of the parent species Aegilops tauschii the source of the bread wheat D genome.

The U.S. team shared the Aegilops tauschii sequences with the British team, which was assembling all three of the wheat A, B and D genomes.

Comparing the Aegilops tauschii sequence with modern wheat allows researchers to assess genomic changes that have taken place in bread wheat since its origin approximately 8,000 years ago.

In the study reported in Nature, the researchers used the whole genome "shotgun sequencing" approach, which generates billions of random genome sequence "reads" and then pieces them together. The results provide information about the DNA making up wheat genes that will help wheat breeders develop hardier varieties by linking genes to key traits, such as disease resistance and drought tolerance.

"This sequencing effort has yielded important information that will accelerate wheat genetics and breeding and help us better understand wheat evolution," Dvorak said. "It cannot be overemphasized, however, that this is just one step in the global effort to produce a high-quality draft of the bread wheat genome sequence."

He said completion of such a high-quality genome sequence for bread wheat is still a few years away and will require broad international collaboration to complete.


'/>"/>

Contact: Patricia Bailey
pjbailey@ucdavis.edu
530-752-9843
University of California - Davis
Source:Eurekalert

Related biology news :

1. UC Davis scientists find new role for P53 genetic mutation -- initiation of prostate cancer
2. UC Davis study finds that above-normal weight alone does not increase the short-term risk of death
3. UC Davis researchers develop new drug delivery system for bladder cancer using nanoparticles
4. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
5. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
6. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
7. UNH researchers find African farmers need better climate change data to improve farming practices
8. Ottawa researchers to lead world-first clinical trial of stem cell therapy for septic shock
9. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
10. Researchers print live cells with a standard inkjet printer
11. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/28/2016)... 2016 Synaptics (NASDAQ: SYNA ), a leading developer ... quarter ended December 31, 2015. --> ... 2016 increased 2 percent compared to the comparable quarter last year ... 2016 was $35.0 million, or $0.93 per diluted share. ... the first quarter of fiscal 2016 grew 9 percent over the ...
(Date:1/22/2016)... , Jan. 22, 2016 ... addition of the "Global Biometrics Market ... their offering. --> http://www.researchandmarkets.com/research/p74whf/global_biometrics ... "Global Biometrics Market in Retail Sector ... --> Research and Markets ( ...
(Date:1/18/2016)... 2016  Extenua Inc., a pioneering developer of ... and access of ubiquitous on-premise and cloud storage, today ... Cyber.  ... C4ISR and Cyber initiatives in support of National ... technology solutions," said Steve Visconti , Extenua ...
Breaking Biology News(10 mins):
(Date:2/4/2016)... 2016  Sangamo BioSciences, Inc. (NASDAQ: SGMO ), ... Edward Lanphier , Sangamo,s president and chief executive ... Sangamo,s ZFP Therapeutic ® development programs and an ... ET on Thursday, February 11, 2016, at the Leerink ... conference is being held in New York ...
(Date:2/4/2016)... Beike Biotechnology, the Shenzhen ... ceremony in late 2015 to mark their successful combined ... --> --> The ... Cell Therapy" was hosted by the Shenzhen Cell Bank ... of Beike Biotechnology Co., Ltd. Shenzhen,s ...
(Date:2/4/2016)... February 4, 2016 --> ... acceleration company is pleased to provide the following update on ... Over the last 3 months we have significantly increased ... agreements exceeding $1,000,000. As a result, we have positioned ourselves ... Inc. license agreement and expect that development to continue on ...
(Date:2/4/2016)... Feb. 4, 2016 Sinovac Biotech Ltd. ("Sinovac" ... provider of biopharmaceutical products in China ... board of directors received on February 4, 2016 a ... a consortium comprised of PKU V-Ming ( Shanghai ... Ltd., CICC Qianhai Development ( Shenzhen ) ...
Breaking Biology Technology: