Navigation Links
U of T led research team uncovers evolutionary origins of prion disease gene

TORONTO, ON A University of Toronto-led team has uncovered the evolutionary ancestry of the prion gene, which may reveal new understandings of how the prion protein causes diseases such as bovine spongiform encephalopathy (BSE), also known as "mad cow disease."

Diseased prion proteins are responsible for the fatal neurodegenerative Creutzfeldt-Jakob disease (CJD) in humans, and BSE, scrapie and chronic wasting disease (CWD) in livestock. Overall, this work holds promise for efforts to reveal the physiological function of members of the prion protein family and may provide insights into the origins and underlying constraints of the conformational changes associated with prion diseases. The study was published today, September 28, 2009, in the online journal PLoS ONE.

Principal investigator Gerold Schmitt-Ulms (Centre for Research in Neurodegenerative Diseases; Department of Laboratory Medicine and Pathobiology, U of T) and his graduate student Sepehr Ehsani teamed up with Holger Wille and Joel Watts (University of California, San Francisco) and David Westaway (University of Alberta) for this project. "The prion protein was discovered over twenty years ago and has been studied intensively. Nobody, however, knew its evolutionary origin and much confusion surrounds its physiological function," says Prof. Schmitt-Ulms. The team's analysis suggests that the prion gene is descended from the more ancient ZIP family of metal ion transporters. Members of the ZIP protein family are well known for their ability to transport zinc and other metals across cell membranes.

The U of T laboratory initially demonstrated the physical proximity of two metal ion transporters, ZIP6 and ZIP10, to mammalian prion proteins in living cells. As with the normal cellular prion protein, ZIP6 and ZIP10 exhibit widespread expression in biological tissues with high transcript levels in the brain. Schmitt-Ulms then made the startling discovery that prion and ZIP proteins contain extensive stretches of similar amino acid sequence. The researchers next documented that the respective segments within ZIP and prion proteins are computationally predicted to acquire a highly similar three-dimensional structure. Finally, the team uncovered multiple additional commonalities between ZIP and prion proteins which led them to conclude these molecules are evolutionarily related.

Most proteins do not act in isolation but partner with other proteins to exert their biological roles. The relationship between ZIP-family and prion proteins may thus provide a new angle from which to study the biology of the prion protein in health and disease. The level of shared characteristics between these protein families, in addition to the presence of prion protein genes in most chordate (i.e., backboned) species, place the split from the ZIP-like ancestor gene at the base of the chordate lineage.

Although no single evidence firmly established the phylogenetic relationship between ZIP and prion genes, Schmitt-Ulms is confident that the many corroborating pieces of evidence collected and, equally important, the absence of any conflicting observations, allow no other conclusion to be drawn.


Contact: Jennifer Little
University of Toronto

Related biology news :

1. UC nanotech researchers develop artificial pore
2. Researchers go underground to reveal 850 new species
3. Pitt researchers net $5 million from NIH to explore better ways to grow cells for regenerative medicine
4. Pitt researchers net $5 million from NIH to explore better ways to grow cells
5. NSF funds states first imaging system for UAB microscale research lab
6. US needs nearly $200 million more on climate-related health research
7. Malaria research wins Jake Baum a Young Tall Poppy award
8. Research needed to learn which DCIS patients may be candidates for less invasive therapy
9. Research network based at University of Toronto gets $5 million boost to speed up cancer detection
10. AFOSRs basic research may lead to revolutionary new devices
11. New research network at McMaster aims to build a better eye
Post Your Comments:
(Date:6/9/2016)... in attendance control systems is proud to announce the introduction of fingerprint attendance control ... right employees are actually signing in, and to even control the opening of doors. ... ... ... Photo - ...
(Date:6/2/2016)... 2016 The Department of Transport Management ... 44 million US Dollar project, for the , ... Personalization, Enrolment, and IT Infrastructure , to ... and implementation of Identity Management Solutions. Numerous renowned international vendors ... Decatur was selected for the most compliant and ...
(Date:5/24/2016)... Ampronix facilitates superior patient care by providing unparalleled technology to leaders of the medical ... premium product recently added to the range of products distributed by Ampronix. ... ... ... Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , ... June 23, 2016 , ... ... pleased to announce the launch of their brand, UP4™ Probiotics, into Target stores ... 35 years, is proud to add Target to its list of well-respected retailers. ...
(Date:6/23/2016)... June 23, 2016 Houston Methodist Willowbrook ... Cy-Fair Sports Association to serve as their official ... Houston Methodist Willowbrook will provide sponsorship support, athletic ... with association coaches, volunteers, athletes and families. ... Cy-Fair Sports Association and to bring Houston Methodist ...
(Date:6/23/2016)... SAN FRANCISCO , June 23, 2016   ... it has secured $1 million in debt financing from ... to ramp up automation and to advance its drug ... for its new facility. "SVB has been ... goes beyond the services a traditional bank would provide," ...
(Date:6/23/2016)... , June 23, 2016 Apellis Pharmaceuticals, ... 1 clinical trials of its complement C3 inhibitor, ... and multiple ascending dose studies designed to assess ... of subcutaneous injection in healthy adult volunteers. ... either as a single dose (ranging from 45 ...
Breaking Biology Technology: