Navigation Links
U of M researchers find novel gene correction model for epidermolysis bullosa
Date:6/6/2013

(MINNEAPOLIS/ST. PAUL) June 6, 2013 A research team led by pediatric blood and marrow transplantation experts Mark Osborn, Ph.D. and Jakub Tolar, M.D., Ph.D. from the Masonic Cancer Center, University of Minnesota, have discovered a remarkable new way to repair genetic defects in the skin cells of patients with the skin disease epidermolysis bullosa.

The findings, published today in the journal Molecular Therapy and highlighted in the most recent issue of Nature, represent the first time researchers been able to correct a disease-causing gene in its natural location in the human genome using engineered transcription activator-like effector nucleases.

Epidermolysis bullosa (EB) is a skin disease caused by genetic mutations. Patients suffering from EB primarily children - lack the proteins that hold the epidermis and dermis together, which leads to painful blistering and sores. The condition is often deadly. The University of Minnesota is an international leader in the treatment of EB and the research that has led to new treatment approaches.

In their latest work, Osborn and Tolar's team collaborated with genomic engineer Daniel Voytas, Ph.D., of the University of Minnesota's College of Biological Sciences, to engineer transcription activator-like effector nucleases (TALENs) that target the mutation and correct the error in the skin cells of patients with the disease. Researchers then reprogrammed these cells to make pluripotent stem cells that can create many different kinds of tissues. These amended cells were then able to produce the missing protein when placed in living skin models.

"These results provide proof of principle for TALEN-based precision gene correction, and it could open the door for more individualized therapeutics," said Osborn, an assistant professor in the University of Minnesota Medical School's Department of Pediatrics Division of Blood and Marrow Transplantation.

By using an unbiased screening method, researchers were able to take a comprehensive approach to TALEN-mapping. This strategy helped identify three other possible locations for future research and potential therapies.

"This is the first time we've been able to seamlessly correct a disease-causing gene in its natural location in the human genome using the TALEN-based approach. This opened up options we did not have before when considering future therapies," said Tolar, director of the University's Stem Cell Institute and an associate professor in the Department of Pediatrics Division of Blood and Marrow Transplantation.

The University of Minnesota Pediatric Blood and Marrow Transplant team, led by John Wagner, M.D. and Bruce Blazar, M.D., has pioneered bone marrow transplantation as the standard of care for severe EB. Tolar and Osborn hope that the individualized "genome editing" of patient cells will provide the next generation of therapies for EB and other genetic diseases.


'/>"/>

Contact: Caroline Marin
crmarin@umn.edu
612-624-5680
University of Minnesota Academic Health Center
Source:Eurekalert

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
3. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
4. UNH researchers find African farmers need better climate change data to improve farming practices
5. Ottawa researchers to lead world-first clinical trial of stem cell therapy for septic shock
6. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
7. Researchers print live cells with a standard inkjet printer
8. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
9. Researchers reveal how a single gene mutation leads to uncontrolled obesity
10. Researchers discover novel therapy for Crohns disease
11. New paper by Notre Dame researchers describes method for cleaning up nuclear waste
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/16/2017)... 2017 - Against identity fraud with DERMALOG solutions "Made in Germany "  ... ... project, multi-biometric solutions provide a crucial contribution against identity fraud. (PRNewsFoto/Dermalog Identification Systems) ... Used combined in one project, multi-biometric solutions provide a crucial contribution against ... ...
(Date:3/9/2017)... and MOUNTAIN VIEW, Calif. ... "Eating Well Made Simple," and 23andMe , the ... guide better food choices.  Zipongo can now provide customers ... food preferences, health goals and biometrics, but also genetic ... food choices. Zipongo,s personalized food decision support ...
(Date:3/6/2017)... SAN MATEO, Calif. , March 6, 2017 ... predictive marketing and sales technology, today announced Predictive ... (AI) solution for infusing actionable sales intelligence into ... customers to automatically enable their sales organizations with ... contextual messages that allow for intelligent engagement. Predictive ...
Breaking Biology News(10 mins):
(Date:3/24/2017)... -- Sinovac Biotech Ltd. ("Sinovac" or the "Company") (NASDAQ: SVA), a ... today announced that its board of directors has amended its shareholder ... March 27, 2017 to March 27, 2018. The amendment was not in ... Ltd. ... Sinovac Biotech Ltd. is a China -based biopharmaceutical ...
(Date:3/24/2017)... 24, 2017   Sienna Biopharmaceuticals, Inc. , a ... announced that Richard Peterson will join the ... Peterson, who brings more than two decades of ... who is retiring at the end of April but ... Peterson joins Sienna from Novan, Inc., where he served ...
(Date:3/23/2017)... MA (PRWEB) , ... March 23, 2017 , ... ... “a viscoelastic material that exhibits both viscous and elastic characteristics when deformed, which ... disc polymer exhibits properties to gently absorb compressive forces and return to its ...
(Date:3/23/2017)... Research and Markets has announced the ... to their offering. ... The Global Market for Bioproducts Should Reach ... a CAGR of 8.9%, This research report ... seven major product segments: bio-derived chemicals, biofuels, pharmaceuticals (biodrugs and ...
Breaking Biology Technology: