Navigation Links
Two suppressor molecules affect 70 genes in leukemia
Date:4/24/2008

COLUMBUS, Ohio By restoring two small molecules that are often lost in chronic leukemia, researchers were able to block tumor growth in an animal model.

The research, using human chronic lymphocytic leukemia (CLL) cells, also showed that loss of the two molecules affects 70 genes, most of which are involved in critical functions such as cell growth, death, proliferation and metabolism.

The findings reveal how the two molecules, called miR-15a and miR-16-1, normally protect against cancer, and suggest a possible new treatment strategy for CLL.

The study, led by researchers at the Ohio State University Comprehensive Cancer Center, was published recently in the Proceedings of the National Academy of Sciences.

These findings give us a signature of 70 deregulated genes that we believe finally explains at the molecular level how these two molecules contribute to CLL, says principal investigator Carlo M. Croce, director of Ohio States human cancer genetics program.

The identification of these genes could also have important significance for the development of new therapeutic approaches for chronic leukemias.

The two molecules are forms of microRNA, tiny molecules that cells use to help regulate the type and amount of proteins they make.

In 2005, Croce and his colleagues first showed that these two microRNAs target a gene called Bcl2, which normally helps cells survive by protecting them from accidental self-destruction. In CLL, however, the gene behaves abnormally and helps the leukemic cells survive long after they should have died.

Croce and his colleagues believe that loss of the two molecules alters the genes behavior.

For the new study, the investigators first injected mice with leukemia cells in which they had restored the two microRNAs. This completely suppressed tumor growth in three of five animals. Mice injected with leukemic cells that lacked the two molecules, on the other hand, developed significant tumors.

This clearly showed that these two microRNAs can suppress tumor development, says coauthor Muller Fabrri, a researcher in Croces laboratory.

Because each microRNA regulates many genes, the investigators wanted to learn which ones, in addition to Bcl2, are affected in cells lacking the two molecules.

First, they measured differences in gene activity in laboratory-grown CLL cells that had either high or low levels of the two molecules.

Next, they measured the levels of all the proteins in the two groups of cells. This proteomic analysis revealed 27 proteins with highly altered amounts. These were identified and shown to be involved in cell growth, cell death and cancer development.

Last, the researchers used human CLL cells from 16 patients to verify the gene targets.

Together, these extensive experiments revealed the signature of 70 genes controlled by the two microRNAs, Fabbri says. They show that microRNAs can affect different biochemical pathways in different ways, and they explain at the molecular level what these two miRNAs do in this disease.


'/>"/>
Contact: Darrell E. Ward
darrell.ward@osumc.edu
614-293-3737
Ohio State University Medical Center
Source:Eurekalert

Related biology news :

1. Bits of junk RNA aid master tumor-suppressor gene
2. Clemson scientists shed light on molecules in living cells
3. New molecules discovered that block cancer cells from modifying cell DNA
4. Curry-derived molecules might be too spicy for colorectal cancers
5. New book presents methods to poke and prod individual molecules
6. Liquid crystal phases of tiny DNA molecules point up new scenario for first life on Earth
7. Synthetic molecules may be less expensive alternative to therapeutic antibodies, researchers find
8. Fast AFM probes measure multiple properties of biomolecules or materials simultaneously
9. Gender, coupled with diabetes, affects vascular disease development
10. Restless legs syndrome affects nearly 2 percent of US/UK children
11. UCR engineers to develop new tool to measure how environmental exposures affect health
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... 2016 First quarter 2016:   ... with the first quarter of 2015 The gross margin ... (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) , ... unchanged, SEK 7,000-8,500 M. The operating margin for 2016 ...
(Date:4/15/2016)... , April 15, 2016 ... "Global Gait Biometrics Market 2016-2020,"  report to their ... ) , ,The global gait biometrics market ... 13.98% during the period 2016-2020. Gait ... which can be used to compute factors that ...
(Date:3/29/2016)... 2016 LegacyXChange, Inc. (OTC: ... SelectaDNA/CSI Protect are pleased to announce our successful effort ... variety of writing instruments, ensuring athletes signatures against counterfeiting ... from athletes on LegacyXChange will be assured of ongoing ... Bill Bollander , CEO states, "By ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Newly created ... services and solutions to the healthcare market. The company's primary focus is on ... sales and marketing strategies that are necessary to help companies efficiently bring their ...
(Date:6/24/2016)... , June 24, 2016 Epic Sciences ... detects cancers susceptible to PARP inhibitors by targeting ... cells (CTCs). The new test has already been ... in multiple cancer types. Over 230 ... damage response pathways, including PARP, ATM, ATR, DNA-PK ...
(Date:6/23/2016)... CAMBRIDGE, Mass. , June 23, 2016 /PRNewswire/ ... the development of novel compounds designed to target ... compound, napabucasin, has been granted Orphan Drug Designation ... in the treatment of gastric cancer, including gastroesophageal ... cancer stemness inhibitor designed to inhibit cancer stemness ...
(Date:6/23/2016)... , June 23, 2016  The Prostate Cancer Foundation (PCF) ... precise treatments and faster cures for prostate cancer. Members of the Class of ... 15 countries. Read More About the Class of 2016 ... ... ...
Breaking Biology Technology: