Navigation Links
Turning waste into inexpensive, green fuel

RIVERSIDE, Calif. ( -- Researchers at the University of California, Riverside's Center for Environmental Research and Technology (CERT) at the Bourns College of Engineering have received two grants to further explore a process they developed that turns waste into inexpensive, green fuels.

"These grants allow for the continued happy marriage of clean technologies," said Chan Park, an associate research engineer at CERT. "This research has the potential to produce a number of clean fuels that are carbon neutral and turn landfill waste into renewable energy."

A $650,000 grant from the California Energy Commission extends its commitment to $2 million to CERT for its patented steam hydrogasification reaction, which can turn any carbonaceous material including waste from food, yards, sewage treatment facilities into transportation fuels or natural gas.

It will allow for the completion of a process demonstration unit at CERT that will provide data needed before a proposed pilot plant is built at the city of Riverside's waste water treatment facility.

Riverside Mayor Ron Loveridge, who wrote a letter in support of the grant application, said he was delighted to hear CERT had received the grant.

"The city supported the initial research on the gasification of biosolids from our water treatment facility, and we certainly look forward to partnering as this technology is developed," Loveridge said. "This process has the potential to be used throughout California and globally to provide a cost effective sustainable component to our natural gas supply."

The second grant, for $100,000 from the UC Discovery Program, which pairs industry and university research to boost the California economy, will connect CERT researchers with Irvine-based Food Recycle Science Corporation, which has developed a process to turn food waste into a concentrated biomass. The biomass will be evaluated as a feedstock for CERT's steam hydrogasification reactors.

Initial testing has found the concentrated biomass is 10 percent more efficient than other biomass feedstocks evaluated, said Sean Lee, the CEO of Food Recycle Science.

"We saw that and said, 'Wow, this is a great discovery,'" Lee said.

The steam hydrogasification reaction, which CERT engineers began developing in 2005, has been found to be 12 percent more efficient, with 18 percent lower capital costs, compared to other mainstream gasification technologies when evaluated by the National Energy Technology Laboratory of the U.S. Department of Energy.

The reaction also has other advantages. It can be used with mixed fuel stocks, including agricultural byproducts, waste wood, municipal wastes and sewage sludge. The optimal plant size can be smaller because of the lower capital investment needed. This means smaller fuel plants can be located near sources of feedstocks, reducing the cost and carbon emissions released by transportation of fuel stocks.

The grant from the California Energy Commission will allow for the evaluation of new feedstock sources, including algae, which can be readily grown at waste water treatment plants, and the concentrated biomass produced by the Food Recycle Science process.

Another goal is to produce synthetic natural gas from a mix of biomass, food waste, and biosolids as a renewable replacement for natural gas found in the earth and sea.

CERT engineers project that substantial synthetic natural gas could be gasified out of the carbonaceous wastes produced annually in California. They estimate that more than 132 trillion cubic feet of synthetic natural gas could be produced in the state. That could replace 5.5 percent of natural gas found in the earth and sea with a clean, renewable resource.

If successful, the process could also cut greenhouse gases released by the burning of natural gas by an estimated 10.5 million tons each year. Just as importantly, estimates show that synthetic natural gas can be produced for nearly half the current price of natural gas, reducing the annual price tag by $606 million.

Food Recycle Science has developed a proprietary process, eCorect, for the hydrothermolytic decomposition of food wastes. The process and steam hydrogasification reaction are environmentally "closed," meaning they produce no methane or carbon emissions and therefore no global-warming-producing greenhouse gases.

Initially, Food Recycle Science focused on implementing the system at restaurants and hotels, said Lee, the CEO. Now, they are focused on large-scale plants that could process 200 tons of waste per day, he said.

Food Recycle Science and CERT researchers will work to integrate the two technologies during the next year. Their first goal is to evaluate the optimum moisture content and particle size of the feedstock. They will then measure the carbon conversion efficiency of the process in CERT laboratories.

Using lab experiments and computer simulations, the final step will be to calculate the economic return of the production of different energy types including synthetic diesel, natural gas, or electricity that can be produced by the process.


Contact: Sean Nealon
University of California - Riverside

Related biology news :

1. Fighting back from extinction, New Zealand right whale is returning home
2. Turning hot air into energy savings
3. Turning plants into power houses
4. Turning bacteria into butanol biofuel factories
5. Turning to nature for inspiration
6. Discovery may lead to turning back the clock on ovarian cancer
7. Turning school ground natural areas into environmental labs
8. Thesis analyzes factors responsible for the case of Basque natural cider turning bitter
9. Brain tumors: Tissue stem cell turning into tumor stem cell
10. Duke technique is turning proteins into glass
11. Turning sunlight into liquid fuels
Post Your Comments:
(Date:10/29/2015)... ANN ARBOR, Mich. , Oct. 29, 2015 ... with Eurofins Genomics for U.S. distribution of its ... DNA-seq kit and Rubicon,s new ThruPLEX Plasma-seq ... DNA to enable the preparation of NGS libraries ... in plasma for diagnostic and prognostic applications in ...
(Date:10/29/2015)... , October 29, 2015 ... biometric authentication company focused on the growing mobile ... wallet announces that StackCommerce, a leading marketplace to ... featuring the Wocket® smart wallet on StackSocial for ... ) ("NXT-ID" or the "Company"), a biometric authentication ...
(Date:10/27/2015)... NEW YORK , Oct. 27, 2015 ... the major issues of concern for various industry verticals ... This is due to the growing demand for secure ... practices in various ,sectors, such as hacking of bank ... concerns for electronic equipment such as PC,s, laptops, and ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... QUEBEC CITY , Nov. 24, 2015 /PRNewswire/ - ... the request of IIROC on behalf of the Toronto ... this news release there are no corporate developments that ... price. --> --> ... --> . --> Aeterna Zentaris ...
(Date:11/24/2015)... , November 24, 2015 ... market research report "Oligonucleotide Synthesis Market by Product & ... Gene Synthesis, Diagnostic, DNA, RNAi), End-User (Research, Pharmaceutical & ... by MarketsandMarkets, the market is expected to reach USD ... 2015, at a CAGR of 10.1% during the forecast ...
(Date:11/24/2015)... , ... November 24, 2015 , ... The Academy of ... Interest Group (SIG), MultiGP, also known as Multirotor Grand Prix, to represent the First–Person ... few years. Many AMA members have embraced this type of racing and several new ...
(Date:11/24/2015)... , November 24, 2015 ... market research report released by Transparency Market Research, the ... at a CAGR of 17.5% during the period between ... Market - Global Industry Analysis, Size, Volume, Share, Growth, ... non-invasive prenatal testing market to reach a valuation of ...
Breaking Biology Technology: