Navigation Links
Turning human stem cells into brain cells sheds light on neural development
Date:5/2/2013

Medical researchers have manipulated human stem cells into producing types of brain cells known to play important roles in neurodevelopmental disorders such as epilepsy, schizophrenia and autism. The new model cell system allows neuroscientists to investigate normal brain development, as well as to identify specific disruptions in biological signals that may contribute to neuropsychiatric diseases.

Scientists from The Children's Hospital of Philadelphia and the Sloan-Kettering Institute for Cancer Research led a study team that described their research in the journal Cell Stem Cell, published online today.

The research harnesses human embryonic stem cells (hESCs), which differentiate into a broad range of different cell types. In the current study, the scientists directed the stem cells into becoming cortical interneuronsa class of brain cells that, by releasing the neurotransmitter GABA, controls electrical firing in brain circuits.

"Interneurons act like an orchestra conductor, directing other excitatory brain cells to fire in synchrony," said study co-leader Stewart A. Anderson, M.D., a research psychiatrist at The Children's Hospital of Philadelphia. "However, when interneurons malfunction, the synchrony is disrupted, and seizures or mental disorders can result."

Anderson and study co-leader Lorenz Studer, M.D., of the Center for Stem Cell Biology at Sloan-Kettering, derived interneurons in a laboratory model that simulates how neurons normally develop in the human forebrain.

"Unlike, say, liver diseases, in which researchers can biopsy a section of a patient's liver, neuroscientists cannot biopsy a living patient's brain tissue," said Anderson. Hence it is important to produce a cell culture model of brain tissue for studying neurological diseases. Significantly, the human-derived cells in the current study also "wire up" in circuits with other types of brain cells taken from mice, when cultured together. Those interactions, Anderson added, allowed the study team to observe cell-to-cell signaling that occurs during forebrain development.

In ongoing studies, Anderson explained, he and colleagues are using their cell model to better define molecular events that occur during brain development. By selectively manipulating genes in the interneurons, the researchers seek to better understand how gene abnormalities may disrupt brain circuitry and give rise to particular diseases. Ultimately, those studies could help inform drug development by identifying molecules that could offer therapeutic targets for more effective treatments of neuropsychiatric diseases.

In addition, Anderson's laboratory is studying interneurons derived from stem cells made from skin samples of patients with chromosome 22q.11.2 deletion syndrome, a genetic disease which has long been studied at The Children's Hospital of Philadelphia. In this multisystem disorder, about one third of patients have autistic spectrum disorders, and a partially overlapping third of patients develop schizophrenia. Investigating the roles of genes and signaling pathways in their model cells may reveal specific genes that are crucial in those patients with this syndrome who have neurodevelopmental problems.


'/>"/>

Contact: John Ascenzi
Ascenzi@email.chop.edu
267-426-6055
Children's Hospital of Philadelphia
Source:Eurekalert

Related biology news :

1. Returning military personnel to duty following severe injury to the lower extremity
2. Researchers find molecular switch turning on self-renewal of liver damage
3. AZTI-Tecnalia is turning vegetable by-products destined for landfills into feedstuff
4. Zebrafish may hold the answer to repairing damaged retinas and returning eyesight to people
5. Why astronauts experience low blood pressure after returning to Earth from space
6. Turning ideas into products faster
7. Turning down the dial: Ocean energy development with less sound
8. Turning off small RNA
9. OGIs investment in cytognomix contributes to the Shannon Human Splicing Pipelines success
10. CNIO researchers capture the replication of the human genome for the first time
11. Source identification of H7N9 influenza virus causing human infections
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/1/2016)... 1, 2016  Wocket® smart wallet ( www.wocketwallet.com ) announces the launch ... Joey Fatone . Las Vegas , where Joey ... --> Las Vegas , where Joey appeared at the ... new video ad was filmed at the Consumer Electronics Show (CES2016) in ... booth to meet and greet fans. --> ...
(Date:1/25/2016)... SEATTLE , Jan. 25, 2016  Glencoe Software, ... biotech, pharma and publication industries, will provide the data ... Phenotypic Screening Centre (NPSC). ... Phenotypic analysis ... even whole organisms, allowing comparisons between states such as ...
(Date:1/20/2016)... A market that just keeps on growing. ... explosion in genomics knowledge. Learn all about it in ... of dynamic trends are pushing market growth and company ... pharmacogenomics - pathogen evolution - next generation sequencing - ... understanding of the role of genetic material in Disease ...
Breaking Biology News(10 mins):
(Date:2/9/2016)... ... February 09, 2016 , ... PharmApprove ... Policy for the National Organization for Rare Disorders (NORD). Dorman will lead PharmApprove ... voices are heard throughout the drug regulatory review process. , “Adding Diane Dorman ...
(Date:2/9/2016)... -- This market research report on the global microbiology ... the market in terms of revenue (USD Million). The ... manufacture of microbiology culture media and related products. The ... providing the overall information of various market segments included ... provides the overall information and data analysis of the ...
(Date:2/9/2016)... February 9, 2016 Three-Year Initiative Supports ... to Take Part in Life-Changing Camp ... designed to positively affect the lives of children born with rare ... --> SHPG ) is announcing a new initiative designed to ... well as the future of rare disease care. --> ...
(Date:2/9/2016)... , Feb. 9, 2016 ... Inhibitors-Pipeline Insights, 2016", report provides in depth ... development activities around the Protein-Tyrosine Phosphatase 1B ... product profiles in various stages of development ... II, Phase III and Preregistration. Report covers ...
Breaking Biology Technology: