Navigation Links
Turning fungus into fuel
Date:5/4/2008

LOS ALAMOS, New Mexico, May 4, 2008A spidery fungus with a voracious appetite for military uniforms and canvas tents could hold the key to improvements in the production of biofuels, a team of government, academic and industry researchers has announced.

In a paper published today in Nature Biotechnology, researchers led by Los Alamos National Laboratory and the U.S. Department of Energy Joint Genome Institute announced that the genetic sequence of the fungus Tricoderma reesei has uncovered important clues about how the organism breaks down plant fibers into simple sugars. The finding could unlock possibilities for industrial processes that can more efficiently and cost effectively convert corn, switchgrass and even cellulose-based municipal waste into ethanol. Ethanol from waste products is a more-carbon-neutral alternative to gasoline.

The fungus T. reesei rose to dubious fame during World War II when military leaders discovered it was responsible for rapid deterioration of clothing and tents in the South Pacific. Named after Dr. Elwyn T. Reese, who, with colleagues, originally isolated the hungry fungus, T. reesei was later identified as a source of industrial enzymes and a role model for the conversion of cellulose and hemicelluloseplant fibersinto simple sugars.

The organism uses enzymes it creates to break down human-indigestible fibers of plants into the simplest form of sugar, known as a monosaccharide. The fungus then digests the sugars as food.

Researchers decoded the genetic sequence of T. reesei in an attempt to discover why the deep green fungus was so darned good at digesting plant cells. The sequence results were somewhat surprising. Contrary to what one might predict about the gene content of a fungus that can eat holes in tents, T. reesei had fewer genes dedicated to the production of cellulose-eating enzymes than its counterparts.

We were aware of T. reeseis reputation as producer of massive quantities of degrading enzymes, however we were surprised by how few enzyme types it produces, which suggested to us that its protein secretion system is exceptionally efficient, said Los Alamos bioscientist Diego Martinez (also at the University of New Mexico), the studys lead author. The researchers believe that T. reeseis genome includes clusters of enzyme-producing genes, a strategy that may account for the organisms efficiency at breaking down cellulose.

On an industrial scale, T. reesei could be employed to secrete enzymes that can be purified and added into an aqueous mixture of cellulose pulp and other materials to produce sugar. The sugar can then be fermented by yeast to produce ethanol.

The sequencing of the Trichoderma reesei genome is a major step towards using renewable feedstocks for the production of fuels and chemicals, said Joel Cherry, director of research activities in second-generation biofuels for Novozymes, a collaborating institution in the study. The information contained in its genome will allow us to better understand how this organism degrades cellulose so efficiently and to understand how it produces the required enzymes so prodigiously. Using this information, it may be possible to improve both of these properties, decreasing the cost of converting cellulosic biomass to fuels and chemicals.


'/>"/>

Contact: James E. Rickman
jamesr@lanl.gov
505-665-9203
DOE/Los Alamos National Laboratory
Source:Eurekalert

Related biology news :

1. Montana State University researcher finds renewed interest in turning algae into fuel
2. Cow stomach holds key to turning corn into biofuel
3. Turning on cell-cell communication wipes out staph biofilms
4. Fungus genome yielding answers to protect grains, people and animals
5. Scientists complete genome sequence of fungus responsible for dandruff, skin disorders
6. Scientists find missing evolutionary link using tiny fungus crystal
7. Evolution of the sexes: What a fungus can tell us
8. Killer fungus spells disaster for wheat
9. Smithsonians National Museum of Natural History reveals ants as fungus farmers
10. Lean and mean biomass-degrading fungus reveals capabilities for improved biofuel production
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/9/2016)... , June 9, 2016 ... deploy Teleste,s video security solution to ensure the safety of ... during the major tournament Teleste, an ... systems and services, announced today that its video security solution ... to back up public safety across the country. The ...
(Date:6/2/2016)... Perimeter Surveillance & Detection Systems, Biometrics & ... & Other Service  The latest report from ... of the global Border Security market . Visiongain ... billion in 2016. Now: In November 2015 ... and hardware technologies for advanced video surveillance. ...
(Date:5/12/2016)... May 12, 2016 WearablesResearch.com , a ... the overview results from the Q1 wave of its ... wave was consumers, receptivity to a program where they ... a health insurance company. "We were surprised ... says Michael LaColla , CEO of Troubadour Research, ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers and ... and the 6000i models are higher end machines that use the more unconventional z-dimension ... light beam from the bottom of the cuvette holder. , FireflySci has developed ...
(Date:6/23/2016)... TORONTO , June 23, 2016 /PRNewswire/ - ... Ontario biotechnology company, Propellon ... the development and commercialization of a portfolio of ... cancers. Epigenetic targets such as WDR5 represent an ... contribute significantly in precision medicine for cancer patients. ...
(Date:6/23/2016)... June, 23, 2016  The Biodesign Challenge (BDC), a ... ways to harness living systems and biotechnology, announced its ... in New York City . ... students, showcased projects at MoMA,s Celeste Bartos Theater during ... , MoMA,s senior curator of architecture and design, and ...
(Date:6/23/2016)... June 23, 2016 Apellis Pharmaceuticals, Inc. ... clinical trials of its complement C3 inhibitor, APL-2. ... multiple ascending dose studies designed to assess the ... subcutaneous injection in healthy adult volunteers. ... as a single dose (ranging from 45 to ...
Breaking Biology Technology: