Navigation Links
Tumor suppressor p53 prevents cancer progression in cells with missegregated chromosomes
Date:2/1/2010

Cells missegregate a chromosome approximately once every hundred divisions. But don't be too alarmed: new research in the Journal of Cell Biology shows that the tumor suppressor p53 limits the growth of cells with incorrect numbers of chromosomes and prevents their progression toward cancer. The study appears online February 1 (www.jcb.org).

Tumor cells tend to missegregate chromosomes at a particularly high frequency (a condition known as chromosomal instability, or CIN), which is probably why they are often aneuploid (i.e., they carry an abnormal number of chromosomes). In 2008, Sarah Thompson and Duane Compton, from Dartmouth Medical School, revealed that most CIN in tumor cells was caused by incorrect attachments between mitotic spindle microtubules and kinetochores, and that inducing misattachments in normal cells was sufficient to generate high rates of chromosome missegregation. There was a small but significant wrinkle to this story, however: normal, diploid cells stopped proliferating as soon as they gained or lost a chromosome, so they never converted into a cancer-like aneuploid cell line.

To investigate why normal cells stop proliferating when they missegregate their DNA, Thompson and Compton engineered a human cell line to carry a unique fluorescent mark on one of its chromosomes. This allowed them to identify and follow by live microscopy the cells that missegregated a chromosome.

The researchers induced missegregation and then looked for cells that had gained or lost a fluorescent mark within their genome. These cells failed to proliferate, and showed elevated levels of p53 and one of its transcriptional targets, the cell cycle inhibitor p21. Cells lacking p53 became aneuploid after induced missegregation, indicating that the p53 pathway normally serves to limit the propagation of cells with odd numbers of chromosomes.

How is p53 activated by chromosome missegregation? Thompson and Compton think that a change in chromosome number leads to an imbalance in gene expression, resulting in a stress response and cell cycle arrest that is vital to avoid cancer. "By combining loss of p53 with increased missegregation rates, we can convert a diploid cell into something . that looks like a tumor cell," says Compton. Furthermore, these aneuploid cells develop an inherent genomic instability reminiscent of genuine cancer cells, perhaps because imbalanced gene expression also causes disruptions to mitosis.

A recent study demonstrated that chromosome missegregation initiates tumorigenesis by causing cells to lose tumor suppressors like p53. "It's like a self-fulfilling prophecy," argues Compton. "If you missegregate a chromosome encoding p53, you make the cells deficient in p53, so they're able to propagate and missegregate more chromosomes."

There are circumstances in which nontumor cells tolerate aneuploidy just fine, but, in most cases, healthy cells keep a tight check on chromosome number. "I think it affects a lot of different pathways," says Compton. "The next question to ask is which pathways are sensitive to aneuploidy, and how do tumor cells overcome those problems?"


'/>"/>

Contact: Rita Sullivan
news@rupress.org
212-327-8603
Rockefeller University Press
Source:Eurekalert  

Related biology news :

1. Drug shows promise as new treatment for gut tumor
2. Nervous culprit found for Tassie devil facial tumor disease
3. Delivering medicine directly into a tumor
4. New understanding of how to prevent destruction of a tumor suppressor
5. Tiny RNA has big impact on lung cancer tumors
6. Discovery makes brain tumor cells more responsive to radiation
7. Tumor-attacking virus strikes with one-two punch
8. CSHL study shows that some malignant tumors can be shut down after all
9. Testicular tumors may explain why some diseases are more common in children of older fathers
10. Loss of tumor supressor gene essential to transforming benign nerve tumors into cancers
11. Trial of new treatment for advanced melanoma shows rapid shrinking of tumors
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Tumor suppressor p53 prevents cancer progression in cells with missegregated chromosomes
(Date:6/2/2016)... 2, 2016 The Department of Transport ... the 44 million US Dollar project, for the , ... including Personalization, Enrolment, and IT Infrastructure , to ... production and implementation of Identity Management Solutions. Numerous renowned international ... Decatur was selected for the most compliant ...
(Date:6/1/2016)... YORK , June 1, 2016 ... Technology in Election Administration and Criminal Identification to Boost ... to a recently released TechSci Research report, " Global ... By Region, Competition Forecast and Opportunities, 2011 - 2021", ... 24.8 billion by 2021, on account of growing security ...
(Date:5/16/2016)... May 16, 2016   EyeLock LLC , a ... the opening of an IoT Center of Excellence in ... expand the development of embedded iris biometric applications. ... of convenience and security with unmatched biometric accuracy, making ... aside from DNA. EyeLock,s platform uses video technology to ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , the ... today the Clinical Reach Virtual Patient Encounter CONSULT module which enables both ... physician and clinical trial team. , Using the CONSULT module, patients and physicians can ...
(Date:6/27/2016)... -- Liquid Biotech USA , Inc. ... Research Agreement with The University of Pennsylvania ("PENN") ... patients.  The funding will be used to assess ... outcomes in cancer patients undergoing a variety of ... to support the design of a therapeutic, decision-making ...
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a leader in ... Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research professionals, Mosio ... practical tips, tools, and strategies for clinical researchers. , “The landscape of how ...
Breaking Biology Technology: