Navigation Links
Tufts University chemist earns prestigious award for promising research on drug development
Date:11/12/2010

MEDFORD/SOMERVILE, Mass. Joshua Kritzer, assistant professor in the School of Arts and Sciences Department of Chemistry at Tufts University, has been awarded one of 33 NIH Director's New Innovator Awards, one of the most prestigious grants awarded by the National Institutes of Health.

The NIH Director's New Innovator Award program is designed specifically to support unusually creative new investigators with highly innovative research ideas at an early stage of their career. Awards recognize the potential of projects to have a significant impact on important biomedical or behavioral research problems.

The $1.5 million grant will fund Kritzer's research into a rapid drug-screening process that may help scientists identify new drugs to treat diseases. Scientists today face a fundamental problem in the drug discovery process. Up to 90 percent of the human proteins, including many that cause cancer and other diseases, are difficult to target through traditional methods of screening.

Adapting his previous work at the Whitehead Institute for Biomedical Research, Kritzer is able to use baker's yeast to produce large collections of molecules called cyclic peptides. To do this, Kritzer inserted short snippets of DNA into the yeast cells that direct them to make the cyclic peptides. The cells then synthesize tens of millions of different cyclic peptides that can be directly tested for anti-cancer or other activities.

Cyclic peptides are important because they can bind with disease-causing proteins that scientists previously have been unable to target because they do not possess "active sites" or pockets that can easily bind with inhibitory drugs. As a result, drug developers have largely ignored these proteins, says Kritzer. "They are considered undruggable targets, but they include some of the most direct causes of cancer, inflammation and other diseases," he says.

Kritzer will focus his technology on a specific group of proteins called transcription factors, which are in charge of turning genes on and off. "Cancer involves cell growth pathways that are getting turned on when they should be off," says Kritzer, and thus many transcription factors are known to be overactive in human cancers. For his research Kritzer will target three transcription factors implicated in cancer -- Myc, STAT3 and HSF1.

Kritzer can use yeast cells not only to make the cyclic peptides but also to sift through them to find those that inhibit these critical cancer proteins. In this manner, Kritzer notes, "we can screen up to 50 million new molecules for activity in living cells in a single week."

These new molecules will then be used as tools to understand how transcription factors contribute to cancer and other diseases. They may even form the basis for designing drugs that target these important but overlooked proteins.


'/>"/>

Contact: Alex Reid
alexander.reid@tufts.edu
617-627-4173
Tufts University
Source:Eurekalert

Related biology news :

1. Tufts graduate students win $10,000 prizes
2. Tufts wins NCRR grant for Collaborative Cluster in Genome Structure and Developmental Patterning
3. Tufts students host Earth Day with groundbreaking ceremony for solar house
4. Tufts University professor receives IADR Pharmacology/Therapeutics/Toxicology Award
5. Tufts University Prof. Maria Flytzani-Stephanopoulos named as AAAS Fellow
6. Karl Deisseroth of Stanford University receives HFSP Nakasone Award
7. Michigan State University Federal Credit Union Deploys DigitalPersona Pro to Simplify Password Management and Strengthen Security
8. Columbia University Medical Center announces 2010 Katz Prizes in cardiovascular research
9. University of Illinois researchers discover potential new virus in switchgrass
10. Texas A&M University becomes key player in global study to save Earths endangered species
11. Falling in love more scientific than you think, according to Syracuse University professor
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... , April 5, 2017  The Allen Institute for ... Cell Explorer: a one-of-a-kind portal and dynamic digital window ... imaging data, the first application of deep learning to ... stem cell lines and a growing suite of powerful ... for these and future publicly available resources created and ...
(Date:4/4/2017)... , April 4, 2017   EyeLock LLC , ... that the United States Patent and Trademark Office (USPTO) ... covers the linking of an iris image with a ... and represents the company,s 45 th issued patent. ... is very timely given the multi-modal biometric capabilities that ...
(Date:3/30/2017)... The research team of The Hong Kong ... identification by adopting ground breaking 3D fingerprint minutiae recovery and matching ... and accuracy for use in identification, crime investigation, immigration control, security ... ... A research team led by ...
Breaking Biology News(10 mins):
(Date:9/20/2017)... ... September 20, 2017 , ... ... study examining the effects of exoskeleton-assisted walking on gait parameters and neuromuscular ... article, "Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session" (doi:10.1080.10790268.2017.1314900) ...
(Date:9/19/2017)... ... 2017 , ... Participants of this educational webinar will learn ... with the advantages and disadvantages of ductless, filtered fume hoods, they will also ... , Attendees will learn from an industry expert about the different types of ...
(Date:9/19/2017)... , Sept. 19, 2017 ValGenesis Inc., the ... is pleased to announce the strategic partnership with VTI ... clients with validation services using the latest technology available ... will provide clients with efficient and cost-effective validation services ... partner for the ValGenesis VLMS system. ...
(Date:9/18/2017)... ... 18, 2017 , ... Transportable biomass conversion facilities and the ... is the topic of a September 27 webinar hosted by the ... transportable biomass conversion facilities for producing biochar, briquettes, and torrefied wood, biomass supply ...
Breaking Biology Technology: