Navigation Links
Triple-negative breast cancer subtypes identified using microRNA
Date:2/7/2013

  • Triple-negative breast cancer is an aggressive form of breast cancer that has few treatment options;
  • This large-scale study shows that abnormal levels of small molecules called microRNA can be used to classify this malignancy into four subtypes;
  • The findings could lead to new ways to identify the best therapy for individual patients and to more effective therapies in the future.

COLUMBUS, Ohio A new, large-scale study of triple-negative breast cancer shows that small molecules called microRNA can be used to define four subtypes of this aggressive malignancy.

The findings, by researchers at The Ohio State University Comprehensive Cancer Center Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC James) working with collaborators in Italy, could lead to new screening methods, prognostic markers and perhaps new targeted treatments for this aggressive and often-fatal form of breast cancer.

The study is published in the journal PLOS ONE.

"The treatment of women with triple-negative breast cancer is challenging because this malignancy can be very different genetically from one patient to another," says co-senior investigator Dr. Charles Shapiro, director of Breast Medical Oncology and professor of internal medicine at the OSUCCC James.

"We believe these microRNA signatures define novel sub-sets of triple-negative breast cancer and offer new insights into the biology of the disease and better ways to treat these patients," Shapiro says.

The microRNAs that compose the signatures are involved in regulating cell growth, proliferation and survival, and in cell movement and migration.

"These findings strongly suggest that microRNAs play an important role in triple-negative breast cancer and might be used to better identify the most effective treatment for a patient's tumor," says co-senior investigator and researcher Dr. Kay Huebner, professor of molecular virology, immunology and medical genetics at Ohio State.

"Several of the deregulated microRNAs we found in the cancer samples are involved in chemo-resistance or radio-resistance. MicroRNA profiles can help us to improve and personalize therapies for individual patients," she says.

Triple-negative breast cancer accounts for about 15 percent of all breast cancers. It is characterized by cancer cells that lack estrogen, progesterone and HER2 receptors. For this reason, these tumors do not respond to hormone therapies or HER2-targeted treatments.

MicroRNAs help regulate the kind and amount of proteins that cells make. They do this by binding with messenger RNA (mRNA), molecular copies of genes that are translated into proteins. When microRNA is bound to an mRNA, the messenger molecule cannot be translated into a protein. Instead, it is either temporarily stored or destroyed.

This study investigated associations between microRNA expression levels, mRNA expression levels and overall survival and distant-disease-free survival in women with triple-negative breast cancer.

Shapiro, Huebner and their colleagues evaluated 59 normal, 165 tumor and 54 metastatic matched tissue samples, obtained through The Stefanie Spielman Fund for Breast Cancer Research at the OSUCCC James.

The researchers ran a complete microRNA profile and a cancer-focused panel of genes for each sample. They then generated microRNA signatures represented by certain prognostic microRNAs that, when deregulated, indicate odds of survival.

"This was a large cohort of triple-negative breast cancer cases and a major analysis effort that we believe makes this work extremely valuable," Huebner says.

To stratify the cancers, the researchers determined microRNA and mRNA expression profiles in tumor, adjacent-normal tissue and lymph-node metastatic tissue from 173 women with the triple-negative breast cancer.

"We identified microRNAs and mRNAs that uniquely represent primary and metastatic tumors, and that are specifically deregulated in that stage of the disease, says co-author Dr. Pierluigi Gasparini, a postdoctoral researcher in Huebner's laboratory.

The results define microRNA expression signatures that characterize and contribute to the differences between primary and metastatic tumors.

"We now want to learn which of these deregulated microRNAs might represent early biomarkers for cancer or metastasis detection," Gasparini says.

The study's key technical findings include:

  • The microRNA signatures correlated with prognosis and were correlated with changes in mRNA expression;
  • Two microRNA signatures were predictive of overall survival and distant disease-free survival, respectively, in patients 50 years of age or younger;
  • mRNA expression profiling resulted in clustering of triple-negative breast cancer into four molecular subclasses with different expression signatures.

"We believe these findings will be a reference point not only for our lab but also for many other research teams that might not have access to large patient populations, and hope that they will accelerate even more research on triple-negative breast cancer," Huebner says.


'/>"/>

Contact: Darrell E. Ward
Darrell.Ward@osumc.edu
614-293-3737
Ohio State University Medical Center
Source:Eurekalert

Related biology news :

1. TGen-US Oncology data guides treatment of metastatic triple-negative breast cancer patients
2. Quantum dots deliver Vitamin D to tumors for possible inflammatory breast cancer treatment
3. In breast cancer metastasis, researchers identify possible drug target
4. Vitamin D holds promise in battling a deadly breast cancer, Saint Louis University researchers say
5. Does your job increase your breast cancer risk?
6. Breast cancer drug could halt other tumors
7. UCLA researchers to study depression in breast cancer survivors
8. Scientists unravel resistance to breast cancer treatment
9. High levels of DDT in breast milk
10. Breast milk promotes a different gut flora growth than infant formulas
11. New method provides fast, accurate, low cost analysis of BRCA gene mutations in breast cancer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/17/2017)... Florida , April 17, 2017 NXT-ID, ... technology company, announces the filing of its 2016 Annual Report on ... and Exchange Commission. ... on Form 10-K is available in the Investor Relations section of ... as on the SEC,s website at http://www.sec.gov . ...
(Date:4/11/2017)... N.Y. , April 11, 2017 ... fingerprints, but researchers at the New York University ... College of Engineering have found that partial similarities ... security systems used in mobile phones and other ... thought. The vulnerability lies in the ...
(Date:4/5/2017)... -- KEY FINDINGS The global market for ... of 25.76% during the forecast period of 2017-2025. The ... the growth of the stem cell market. ... INSIGHTS The global stem cell market is segmented on ... stem cell market of the product is segmented into ...
Breaking Biology News(10 mins):
(Date:6/26/2017)... ... June 26, 2017 , ... Third Wave Bioactives, LLC announces the addition ... on leading new business development and ensuring quality customer experience. , Brett ... ingredient industry in technical, marketing and sales roles. “Brett’s background working with customers and ...
(Date:6/23/2017)... , ... June 23, 2017 , ... Ken Hanson, a ... of Physik Instrumente USA, have been selected as this year’s recipients of two top ... two have been invited along with other honorees to accept their awards at a ...
(Date:6/22/2017)... ... June 21, 2017 , ... Building on the success of the inaugural RAADfest ... the very latest developments in radical life extension. RAADfest combines cutting edge science presented ... empowerment of personal development, making it the largest most comprehensive and inclusive super longevity ...
(Date:6/22/2017)... ... ... The first human cell line HeLa, established in 1951, has entered cell ... human cell lines with HeLa cells were published. Until recently, cross-contamination and misidentification of ... associated with dramatic consequences for research. , In this educational webinar, which is ...
Breaking Biology Technology: