Navigation Links
Triple-negative breast cancer subtypes identified using microRNA
Date:2/7/2013

  • Triple-negative breast cancer is an aggressive form of breast cancer that has few treatment options;
  • This large-scale study shows that abnormal levels of small molecules called microRNA can be used to classify this malignancy into four subtypes;
  • The findings could lead to new ways to identify the best therapy for individual patients and to more effective therapies in the future.

COLUMBUS, Ohio A new, large-scale study of triple-negative breast cancer shows that small molecules called microRNA can be used to define four subtypes of this aggressive malignancy.

The findings, by researchers at The Ohio State University Comprehensive Cancer Center Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC James) working with collaborators in Italy, could lead to new screening methods, prognostic markers and perhaps new targeted treatments for this aggressive and often-fatal form of breast cancer.

The study is published in the journal PLOS ONE.

"The treatment of women with triple-negative breast cancer is challenging because this malignancy can be very different genetically from one patient to another," says co-senior investigator Dr. Charles Shapiro, director of Breast Medical Oncology and professor of internal medicine at the OSUCCC James.

"We believe these microRNA signatures define novel sub-sets of triple-negative breast cancer and offer new insights into the biology of the disease and better ways to treat these patients," Shapiro says.

The microRNAs that compose the signatures are involved in regulating cell growth, proliferation and survival, and in cell movement and migration.

"These findings strongly suggest that microRNAs play an important role in triple-negative breast cancer and might be used to better identify the most effective treatment for a patient's tumor," says co-senior investigator and researcher Dr. Kay Huebner, professor of molecular virology, immunology and medical genetics at Ohio State.

"Several of the deregulated microRNAs we found in the cancer samples are involved in chemo-resistance or radio-resistance. MicroRNA profiles can help us to improve and personalize therapies for individual patients," she says.

Triple-negative breast cancer accounts for about 15 percent of all breast cancers. It is characterized by cancer cells that lack estrogen, progesterone and HER2 receptors. For this reason, these tumors do not respond to hormone therapies or HER2-targeted treatments.

MicroRNAs help regulate the kind and amount of proteins that cells make. They do this by binding with messenger RNA (mRNA), molecular copies of genes that are translated into proteins. When microRNA is bound to an mRNA, the messenger molecule cannot be translated into a protein. Instead, it is either temporarily stored or destroyed.

This study investigated associations between microRNA expression levels, mRNA expression levels and overall survival and distant-disease-free survival in women with triple-negative breast cancer.

Shapiro, Huebner and their colleagues evaluated 59 normal, 165 tumor and 54 metastatic matched tissue samples, obtained through The Stefanie Spielman Fund for Breast Cancer Research at the OSUCCC James.

The researchers ran a complete microRNA profile and a cancer-focused panel of genes for each sample. They then generated microRNA signatures represented by certain prognostic microRNAs that, when deregulated, indicate odds of survival.

"This was a large cohort of triple-negative breast cancer cases and a major analysis effort that we believe makes this work extremely valuable," Huebner says.

To stratify the cancers, the researchers determined microRNA and mRNA expression profiles in tumor, adjacent-normal tissue and lymph-node metastatic tissue from 173 women with the triple-negative breast cancer.

"We identified microRNAs and mRNAs that uniquely represent primary and metastatic tumors, and that are specifically deregulated in that stage of the disease, says co-author Dr. Pierluigi Gasparini, a postdoctoral researcher in Huebner's laboratory.

The results define microRNA expression signatures that characterize and contribute to the differences between primary and metastatic tumors.

"We now want to learn which of these deregulated microRNAs might represent early biomarkers for cancer or metastasis detection," Gasparini says.

The study's key technical findings include:

  • The microRNA signatures correlated with prognosis and were correlated with changes in mRNA expression;
  • Two microRNA signatures were predictive of overall survival and distant disease-free survival, respectively, in patients 50 years of age or younger;
  • mRNA expression profiling resulted in clustering of triple-negative breast cancer into four molecular subclasses with different expression signatures.

"We believe these findings will be a reference point not only for our lab but also for many other research teams that might not have access to large patient populations, and hope that they will accelerate even more research on triple-negative breast cancer," Huebner says.


'/>"/>

Contact: Darrell E. Ward
Darrell.Ward@osumc.edu
614-293-3737
Ohio State University Medical Center
Source:Eurekalert

Related biology news :

1. TGen-US Oncology data guides treatment of metastatic triple-negative breast cancer patients
2. Quantum dots deliver Vitamin D to tumors for possible inflammatory breast cancer treatment
3. In breast cancer metastasis, researchers identify possible drug target
4. Vitamin D holds promise in battling a deadly breast cancer, Saint Louis University researchers say
5. Does your job increase your breast cancer risk?
6. Breast cancer drug could halt other tumors
7. UCLA researchers to study depression in breast cancer survivors
8. Scientists unravel resistance to breast cancer treatment
9. High levels of DDT in breast milk
10. Breast milk promotes a different gut flora growth than infant formulas
11. New method provides fast, accurate, low cost analysis of BRCA gene mutations in breast cancer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/21/2017)... Der weltweite Biobanking-Sektor wird bis zum Jahr 2018 ... mehr als 50 Vertretern aus verschiedenen Branchen wurde aber klar, ... Prognose zu realisieren. ... Zu den Schwierigkeiten für Biobanking-Profis ... die Biobank, die Implementierung Zeit sparender Technologien, ein besseres ...
(Date:2/13/2017)... FRANCISCO , Feb. 13, 2017  RSA ... centralized platform that is designed to enhance fraud ... latest release in the RSA Fraud & Risk ... enable organizations to leverage additional insights from internal ... tools to better protect their customers from targeted ...
(Date:2/9/2017)... 2017 The biomass boiler market report by ... boiler market globally in terms of revenue (US$ Mn) ... market for biomass boilers has been segmented on the ... country/region. The market based on feedstock type, has been ... & energy crops, urban residues, and others. On the ...
Breaking Biology News(10 mins):
(Date:2/22/2017)... ... ... Park Systems , a leader in Atomic Force Microscopy (AFM) since ... attendees and Park customers on Feb. 27, 2017 from 12-2pm at Morton’s The Steakhouse ... The luncheon will feature a talk on Automated AFM for Small-Scale and Large-Scale Surface ...
(Date:2/22/2017)... CINCINNATI , Feb. 22, 2017 Scientists ... drives inflammation and organ damage in Gaucher and maybe ... fewer risks and lower costs than current therapies. ... Children,s Hospital Medical Center , which also included investigators ... , report their data Feb. 22. The study ...
(Date:2/22/2017)... ... February 22, 2017 , ... ... of precision treatments for neurodegenerative diseases, today announced it has issued a scientific ... This is one of a series of commentaries from ProMIS’s scientific team offering ...
(Date:2/22/2017)... ... , ... LabRoots , the leading provider of educational and interactive virtual ... announce the launch of a new scholarship for young scientists seeking a degree in ... is open to all high school seniors, 17 years or older; as well as ...
Breaking Biology Technology: