Navigation Links
Tracking shuttle exhaust reveals more information about atmospheric winds

On July 8, 2011 the Space Shuttle Atlantis launched for the very last time. On that historic day, as the world watched its last ascent up into orbit and commentators discussed the program's contributions to space flight and scientific research over 20 years, the shuttle helped spawn one last experiment. As the shuttle reached a height of about 70 miles over the east coast of the U.S., it released as it always did shortly after launch 350 tons of water vapor exhaust.

As the plume of vapor spread and floated on air currents high in Earth's atmosphere, it crossed through the observation paths of seven separate sets of instruments. A group of scientists, reporting in online in the Journal of Geophysical Research on August 27, 2012, tracked the plume to learn more about the airflow in the Mesosphere and Lower Thermosphere (MLT) -- a region that is typically quite hard to study. The team found the water vapor spread much faster than expected and that within 21 hours much of it collected near the arctic where it formed unusually bright high altitude clouds of a kind known as polar mesospheric clouds (PMCs). Such information will help improve global circulation models of air movement in the upper atmosphere, and also help with ongoing studies of PMCs.

"Polar mesospheric clouds are the highest clouds on Earth," says space scientist Michael Stevens at the Naval Research Laboratory, Washington, who is first author on the paper. "They shine brightly when the sun is just below the horizon and typically occur over polar regions in the summer. There is some evidence that they are increasing in number and people want to know if this is indicative of climate change or something else that we don't understand."

Since they shine at night, PMCs are also known as noctilucent clouds, and they can serve as an indicator not just of temperature changes, but also of how currents and waves move high in Earth's atmosphere. A visible cloud of water vapor from something like the shuttle also offers a serendipitous way to observe such motions in the upper winds.

"The plume from the shuttle becomes a ready-made experiment to observe the movement in the atmosphere," says Charles Jackman, a scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. who is the project scientist for a NASA mission called Aeronomy Ice in the Mesosphere (AIM) that specifically observes PMCs. "What this team found is interesting since the plume moved so quickly to the pole, indicating that the winds appear much stronger at those latitudes than was thought."

To track the plume across the sky, the scientists collated seven sets of observations, including data from AIM. The first two sets of instruments to see the plume were on a NASA spacecraft called TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics). Next the plume was viewed through the Sub-Millimeter Radiometer on the Swedish Odin satellite. When the plume reached higher latitudes, it was picked up by the ground-based Microwave Spectrometer at the Institute of Atmospheric Physics in Khlungsborn, Germany as well as an identical ground-based water vapor instrument called cWASPAM1 at the Arctic Lidar Observatory for Middle Atmospheric Research (ALOMAR) in Andenes, Norway. The plume collated into its final shape over the arctic, as a new, extremely bright PMC on July 9, 2011 and there, it could be observed from above by the AIM satellite flying overhead, and from below by another instrument at ALOMAR called the RMR lidar.

Over the course of the plume's travels, these observations showed it spreading horizontally over a distance of some 2000 to 2500 miles. Those parts that drifted into the high latitudes near the North Pole formed ice particles which settled into layers of PMCs down at about 55 miles above Earth's surface. The speed with which the plume arrived at the arctic was a surprise.

"The speed of the movement in the upper atmosphere gives us new information for our models," says Stevens. "As you get higher up in the atmosphere, we just don't have as many measurements of wind speeds or temperatures. The take-away message here is that we need to improve the models of that region."

Since observations of PMCs may be connected to global climate, it's important to subtract out sporadic effects such as shuttle exhaust from other consistent, long-term effects.

"One of AIM's big goals is to find out how much of the cloud's behavior is naturally induced versus man-made," says Jackman. "This last shuttle launch will help researchers separate the shuttle exhaust from the rest of the observations."

Indeed, the AIM observations showed a clear difference between typical PMCs and this shuttle-made one. Normally smaller particles exist at the top, with larger ones at the bottom. The shuttle plume PMC showed a reversed configuration, with larger particles at the top, and smaller at the bottom offering a way to separate out such clouds in the historical record.

Contact: Susan Hendrix
NASA/Goddard Space Flight Center

Related biology news :

1. UC research: Tracking Lake Erie water snake in fight against invasive fish
2. Genetic markers for tracking species
3. Elephant seal tracking reveals hidden lives of deep-diving animals
4. uAttend Time Tracking Solutions Available at
5. Probing the roots of depression by tracking serotonin regulation at a new level
6. Tracking the effects of prenatal alcohol exposure through to 9 years of age
7. Vitamin B12 deficiency: Tracking the genetic causes
8. Research reveals first evidence of hunting by prehistoric Ohioans
9. Study reveals how monarch butterflies recolonize northern breeding range
10. Circadian rhythms have profound influence on metabolic output, UCI study reveals
11. Unexpected discovery reveals a new mechanism for how the cerebellum extracts signal from noise
Post Your Comments:
Related Image:
Tracking shuttle exhaust reveals more information about atmospheric winds
(Date:10/29/2015)... Oct. 29, 2015  The J. Craig Venter Institute ... "DNA Synthesis and Biosecurity: Lessons Learned and Options for ... Health and Human Services guidance for synthetic biology providers ... --> --> Synthetic ... the potential to pose unique biosecurity threats. It now ...
(Date:10/29/2015)... Oct. 29, 2015 Today, LifeBEAM ... partnership with 2XU, a global leader in technical ... smart hat with advanced bio-sensing technology. The hat ... to monitor key biometrics to improve overall training ... the two companies will bring together the most advanced ...
(Date:10/26/2015)... and LAS VEGAS , Oct. ... Labs , an innovator in modern authentication and a ... announced the launch of its latest version of the ... enabling organizations to use standards-based authentication that supports existing ... S3 Authentication Suite is ideal for organizations deploying customer-facing ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... 25, 2015 The Global ... a professional and in-depth study on the current ... (Logo: ) , The ... including definitions, classifications, applications and industry chain structure. ... international markets including development trends, competitive landscape analysis, ...
(Date:11/24/2015)... N.J. (PRWEB) , ... November 24, 2015 , ... The ... the recipient of the 2016 USGA Green Section Award. Presented annually since 1961, the ... through his or her work with turfgrass. , Clarke, of Iselin, N.J., ...
(Date:11/24/2015)... VANCOUVER , Nov. 24, 2015 /CNW/ - iCo ... ICOTF), today reported financial results for the quarter ... are expressed in Canadian dollars and presented under ... the United States ," said Andrew ... "These advancements regarding iCo-008 are not only value ...
(Date:11/24/2015)... - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: AEZ) (the "Company"), ... Toronto Stock Exchange, confirms that as of the date ... that would cause the recent movements in the Company,s ... About Aeterna Zentaris Inc. . ... Zentaris is a specialty biopharmaceutical company engaged in developing ...
Breaking Biology Technology: