Navigation Links
Tracking down pathogenic yeasts
Date:9/28/2010

This release is available in German.

More than half of all people are hosts to Candida albicans in their bodies. This species might be located on their skin or mucous membranes or in the intestines frequently without causing any symptoms. However, it can be dangerous to patients whose immunological system has been weakened such as after organ transplants or chemotherapy with cancer. Then, this fungus penetrates into deeper layers of tissue and uses the blood system to spread throughout the body. In Germany alone, several thousand people die from systemic candida infections every year.

But why does Candida albicans become lethal to people? Which genes are active in the pathogenic state? Are there any interactions between the host and the fungus? What protective mechanisms might prevent the pathogenic state in humans? Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB) in Stuttgart, Germany, asked themselves these and other questions applying pioneering sequencing technology.

This technology is a real game-changer because it can be automated and it greatly accelerates the analysis of genotypes. A case in point is decoding a person's genome and determining the sequence of bases of DNA, which can now be done within a couple weeks. As a comparison, five large-scale research centers with 150 coworkers have been working at sequencing the human genome for seven years, and the Humane Genome Project cost approximately $3 billion. The sequence of the approximately 3 million bases of the human genome was made public in 2001.

Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology have been taking advantage of this cutting-edge sequencing technology to find out which genes play a role in causing the disease to break out with the fungus and the host. Researchers are working with system biology scenarios that they hope will help explain the essential pathogenic mechanisms. The researchers start off by isolating the mRNA, i.e., the copies of all of the active genes, from the human pathogenic yeasts. Then they transform the mRNA into DNA to subsequently fragment and sequence them. What's tricky with this Next-Generation sequencing is the fact that it is not just a couple of fragments that are sequenced, but millions of DNA fragments simultaneously. A single strand of DNA acts as a matrix and an enzyme resynthesizes the second DNA strand on it, one building block after another in a very tight space. To follow this process, each of the four different building blocks (the bases adenine A, guanine G, cytosine C or thymine T) is marked with a different fluorescent dye, and a detector captures all of the various light signals. This is how the sequence of bases can be read from each fragment. The stupendous quantities of data are then analyzed with bioinformational techniques, and researchers can directly discover which genes are still active.

Biologist Christian Grumaz of the Fraunhofer Institute for Interfacial Engineering and Biotechnology provides an explanation for this: "At top speed, we can use this Next-Generation DNA sequencer to simultaneously sequence as many as 100 million DNA fragments with a reading length of up to 500 bases." His institute colleague Dr. Kai Sohn adds, "For the first time, this method enables us to simultaneously obtain both highly sensitive transcription profiles from human pathogenic fungi and infected host cells." Researchers are hoping that this will enable them to draw key conclusions on why the fungus is so dangerous for certain persons with a weakened immunological system.

Scientists will be unveiling their findings at the joint Fraunhofer stand in Hall 9, Stand 30 while graphically demonstrating the huge amounts of data that Next-Generation sequencing supplies. Beyond this, 10 books show examples of the transcriptome of Candida. Other topics that will be discussed at their stand include clinical tests for diseases of the respiratory passages, in vitro testing systems, utilizing nature as a chemical factory, biochips for individualized breast cancer therapy, DNA microarrays for quick diagnosis of pathogens, and 3-D skin models.


'/>"/>

Contact: Christian Grumaz
christian.grumaz@igb.fraunhofer.de
49-711-970-4171
Fraunhofer-Gesellschaft
Source:Eurekalert  

Related biology news :

1. Paleozoic sediment curve provides new tool for tracking sea-floor sediment movements
2. Tracking down the cause of mad cow disease
3. Scientists achieve first tracking of salmon from headwaters in Rockies through Pacific to Alaska
4. Oral rinses used for tracking HPV-positive head and neck cancers holds promise for cancer screening
5. Studies on imaging and tracking transplanted cells
6. VUANCE Announces Crime Scene Security and Evidentiary Tracking Development Project
7. Tracking the molecular pathway to mixed-lineage leukemia
8. Tracking poultry litter phosphorus: Threat of accumulation?
9. Tracking tigers in 3-D
10. New tracking tags are providing fish-eye views of ways to manage depressed fisheries
11. Tracking down the causes of multiple sclerosis
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Tracking down pathogenic yeasts
(Date:11/22/2016)... --  MedNet Solutions , an innovative SaaS-based eClinical technology ... is pleased to announce that the company has been ... Awards as "Most Outstanding in eClinical Solutions" for ... recognition and growth for MedNet, which has effectively supported ... iMedNet ™ , MedNet,s flagship eClinical technology ...
(Date:11/17/2016)... Global Market Watch: Primarily supported by ownership types; ... Academics) market is to witness a value of US$37.1 billion ... Compounded Annual Growth Rate (CAGR) of 10.75% is foreseen from ... 2014-2020. North America is not way ... Europe at 9.56% respectively. Report Focus: ...
(Date:11/15/2016)... 2016  Synthetic Biologics, Inc. (NYSE MKT: SYN), ... the gut microbiome, today announced the pricing of ... its common stock and warrants to purchase 50,000,000 ... to the public of $1.00 per share and ... the offering, excluding the proceeds, if any from ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... ... December 01, 2016 , ... ... value of DNA microarray comparative genomic hybridization (array CGH) for HER2 genomic ... Symposium. Using molecular test results from tumors with previously documented positive, negative, ...
(Date:12/2/2016)... ... December 01, 2016 , ... PhUSE will build ... popularity of US Single Day Events (SDE) to organize a multiple-day US conference. ... Raleigh, NC. Topics of the pharmaceutical and life sciences industry will cover industry ...
(Date:12/2/2016)... ... December 01, 2016 , ... DrugDev believes the only ... a beautiful technology experience. All three tenets were on display at the 2nd Annual ... from over 40 sponsor, CRO and site organizations to discuss innovation and the future ...
(Date:12/2/2016)... ... December 02, 2016 , ... ... consortium of pharmaceutical and biotechnology companies dedicated to collaboratively developing improved chemistry, ... in supplying a vendor-supported, portable online UHPLC, with robust, probe-based sampling. ...
Breaking Biology Technology: