Navigation Links
Trackable drug-filled nanoparticles -- a potential weapon against cancer
Date:2/28/2013

Tiny particles filled with a drug could be a new tool for treating cancer in the future. A new study published by Swedish scientists in Particle & Particle Systems Characterization shows how such nanoparticles can be combined to secure the effective delivery of cancer drugs to tumour cells and how they can be given properties to make them visible in MR scanners and thus rendered trackable.

The team, which consisted of scientists from Karolinska Institutet (KI) and the Royal Institute of Technology (KTH) in Stockholm, and from Chalmers University of Technology in Gothenburg, developed so-called 'theranostic nanoparticles' by combining therapy and diagnostics in one and the same nano material.

"For this study, we produced theranostic nanoparticles able to make pinpoint deliveries of drug payloads to breast cancer cells," says Professor Eva Malmstrm of the School of Chemical Science and Engineering at KTH. "They are also detectable in an MR scanner and can therefore be used diagnostically. The building blocks that we use are biodegradable and show no signs of toxicity."

The new study has resulted in a method of making such theranostic nanoparticles that spontaneously form themselves out of tailored macromolecules (polymers). The balance between hydrophilic (water attracting) and hydrophobic (water repelling) components are important to the successful outcome of this process, the latter being what makes it possible for the particles to be filled with the drug. A relatively high concentration of the naturally occurring isotope 19F (fluorine) makes the particles show up clearly in high-resolution MR tomograms, and by tracking the theranostic nanoparticles through the body, researchers can learn about how the drug is taken up by the tumour and how efficacious the treatment is.

The researchers filled the nanoparticles with the chemotherapeutic doxorubicin, which is used to treat cancer of the bladder, lungs, ovaries, and breast. They showed through experiments on cultivated cells that the particles, while harmless in themselves, are effective at killing cancer cells when loaded with the drug.

The next step is to develop the system to target brain tumours, pancreatic cancer and drug-resistant breast cancer tumours, which are currently difficult to treat effectively with chemotherapy.

"Adding targeting groups to the surface or by changing the size of or adding ionic groups to our nanoparticles will make it possible to increase the selective uptake of these particles in tumours," says Dr Andreas Nystrm, Associate Professor in nanomedicine at the Swedish Medical Nanoscience Center, part of Karolinska Institutet's Department of Neuroscience.

It is hoped that one day this research will lead to tailored chemotherapy treatments that specifically seek out tumour cells. In that the drug, which is toxic to the body, can be delivered more precisely to the tumour, the treatment can be made much more effective with greatly reduced side-effects.


'/>"/>

Contact: Press Office
pressinfo@ki.se
46-852-486-077
Karolinska Institutet
Source:Eurekalert

Related biology news :

1. Are silver nanoparticles harmful?
2. Hybrid copper-gold nanoparticles convert CO2
3. NIST/UMass study finds evidence nanoparticles may increase plant DNA damage
4. From pomegranate peel to nanoparticles
5. Palladium-gold nanoparticles clean TCE a billion times faster than iron filings
6. Paints and coatings containing bactericidal agent nanoparticles combat marine fouling
7. Oh, my stars and hexagons! DNA code shapes gold nanoparticles
8. Nanoparticles added to platelets double internal injury survival rate
9. Nanoparticles reboot blood flow in brain
10. UC Davis researchers develop new drug delivery system for bladder cancer using nanoparticles
11. Synthetic and biological nanoparticles combined to produce new metamaterials
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/7/2017)... February 7, 2017 Ipsidy Inc. ... Corporation [OTC: IDGS], ("Ipsidy" or the "Company") a provider ... processing services, is pleased to announce the following changes ... Effective January 31, 2017, Philip D. Beck ... CEO and President.  An experienced payment industry professional and ...
(Date:2/3/2017)... , Feb. 3, 2017  Texas Biomedical Research Institute announced ... Larry Schlesinger as the Institute,s new President and ... effective May 31, 2017. He is currently the Chair of ... the Center for Microbial Interface Biology at Ohio State University. ... the new President and CEO of Texas Biomed," said Dr. ...
(Date:2/2/2017)... Feb. 2, 2017   TapImmune, Inc. ... company specializing in the development of innovative peptide ... of cancer and metastatic disease, announced today it ... manufacturing of a second clinical lot of TPIV ... receptor alpha. The manufactured vaccine product will be ...
Breaking Biology News(10 mins):
(Date:2/18/2017)... MONTREAL , February 18, 2017 ... von intrazellulären Zytokinen bei adoptiven Zelltherapie-Studien, Poster legt metaproteomische ... ... Biosciences Inc. heute bekanntgab, wird Dr. Yoav Peretz ... Methoden in der Entwicklung von Assays zum Nachweis intrazellulärer ...
(Date:2/18/2017)... , Feb 17, 2017 Research and Markets ... Business Report" report to their offering. ... The report provides separate comprehensive analytics ... , and Rest of World. Annual estimates and forecasts are ... analysis is provided for these markets. Market data and analytics are ...
(Date:2/17/2017)... , Feb. 17, 2017  If only ... tumor had a mutation-conferring resistance to chemotherapy, thousands ... genomics research has focused on finding these mutations ... even from circulating tumor DNA in blood — ... oncology therapeutics. Unfortunately, however, detecting these ...
(Date:2/16/2017)... (PRWEB) , ... February 16, 2017 , ... EIT ... framework primarily aimed at the agricultural industry. Pilot studies are about to get under ... through IoT, Big Data and 5G innovations. The concept is expected to be transferred ...
Breaking Biology Technology: