Navigation Links
Toxic red tides: USC scientist tracks neurotoxin-producing algae

With toxic algal blooms which can increase the amount of harmful toxins in the shellfish that California residents consume ramping up in frequency and severity locally, scientists at USC have developed a new algae monitoring method in hopes of one day being able to predict when and where toxic "red tides" will occur.

"We have, what we fear, is a hotspot here for some types of toxic algal blooms," said David Caron, professor of biological sciences at the USC Dornsife College.

Caron's lab developed a quantitative assay, a procedure for measuring the quantity of specific types of algae in water samples taken from the coast. For the past four years, he used it in Redondo Beach's King Harbor to monitor the Alexandrium catenella algae, which produces saxitoxins, a group of neurotoxins that Caron called "one of the most toxic biologically produced chemicals in the world."

"Just like other species, microscopic species conduct warfare chemical warfare," Caron said. Saxitoxins are thought to help A. catenella keep from being eaten and to out-compete other, similar organisms.

Problems with A. catenella occur because the algae are food for clams, mussels, anchovies and sardines.

"That's when we get into trouble, when it gets into something we would eat," Caron said. In humans, the ingestion of saxitoxins causes paralytic shellfish poisoning.

Caron said that the California Department of Public Health does "a great job of keeping us safe" through water sampling, mussel sampling, and regular closures of shellfish harvesting during certain high-risk times of the year.

Over the past 10 years, however, a different type of algae that produces the neurotoxin domoic acid has been increasing on the west coast. Domoic acid produces amnesic shellfish poisoning in humans, and has been the cause of thousands of marine animal deaths off California during the past decade.

The first documented case of animals being sickened by algal blooms in this region occurred in the 1990s. Since 2003, such events have occurred almost annually in a worrying increase of such blooms, Caron said.

The cause of the increase in toxic algae blooms remains the subject of speculation. This could be the result of an ongoing change in the ecosystem off of California's coast, or it could be that scientists are witnessing a cyclical phenomenon. Extensive monitoring of toxic algal blooms is relatively new in the region, Caron said.

Caron said he hopes that his new assay will help scientists not just to spot the blooms, but to monitor the changes in environmental conditions that lead to such blooms. In particular, he's hoping to discover what causes a harmful species of algae to bloom as opposed to a benign species.

Caron's research, headed by postdoctoral investigator Marie-Eve Garneau of the University of Zurich, was published online on September 16 by Applied and Environmental Microbiology, was supported by funding from the National Oceanic and Atmospheric Administration, the Fonds qubcois de recherche sur la nature et les technologies, and the Swiss National Science Fund.

Fellow authors include Astrid Schnetzer, Adriane C. Jones and Erica L Seubert of USC and Peter D. Coutway of the Bigelow Laboratory for Ocean Sciences.


Contact: Robert Perkins
University of Southern California

Related biology news :

1. Researchers find high levels of toxic PCBs in Indiana Harbor and Ship Canal
2. Dendritic cells in liver protect against acetaminophen toxicity
3. Deepwater Horizon crude less toxic to bird eggs after weathering at sea
4. Bacterial attack strategy uses special delivery of toxic proteins
5. The unsolved mystery of kava toxicity
6. Study shows climate change makes some chemicals more toxic to aquatic life
7. Toxic compounds in groundwater
8. Study finds golden algae responsible for killing millions of fish less toxic in sunlight
9. BGI sequences genome of the deadly E. coli in Germany and reveals new super-toxic strain
10. First Washington green chemistry conference aims to plan for toxics
11. Striking the right balance: JBEI researchers counteract biofuel toxicity in microbes
Post Your Comments:
(Date:6/7/2016)... TORONTO , June 7, 2016  Syngrafii ... begun a business relationship that includes integrating Syngrafii,s ... pilot branch project. This collaboration will result in ... for the credit union, while maintaining existing document ... ...
(Date:6/1/2016)... , June 1, 2016 ... in Election Administration and Criminal Identification to Boost Global ... a recently released TechSci Research report, " Global Biometrics ... Region, Competition Forecast and Opportunities, 2011 - 2021", the ... billion by 2021, on account of growing security concerns ...
(Date:5/9/2016)... UAE, May 9, 2016 Elevay ... comes to expanding freedom for high net worth professionals ... in today,s globally connected world, there is still no ... could ever duplicate sealing your deal with a firm ... passports by taking advantage of citizenship via investment programs ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Newly ... technologies, services and solutions to the healthcare market. The company's primary focus is ... manufacturing, sales and marketing strategies that are necessary to help companies efficiently bring ...
(Date:6/24/2016)... Epic Sciences unveiled a liquid biopsy ... PARP inhibitors by targeting homologous recombination deficiency (HRD) ... test has already been incorporated into numerous clinical ... Over 230 clinical trials are investigating ... PARP, ATM, ATR, DNA-PK and WEE-1. Drugs targeting ...
(Date:6/23/2016)... 2016   Boston Biomedical , an industry ... to target cancer stemness pathways, announced that its ... Drug Designation from the U.S. Food and Drug ... including gastroesophageal junction (GEJ) cancer. Napabucasin is an ... cancer stemness pathways by targeting STAT3, and is ...
(Date:6/23/2016)... 23, 2016  The Prostate Cancer Foundation (PCF) is pleased to ... faster cures for prostate cancer. Members of the Class of 2016 were selected ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
Breaking Biology Technology: