Navigation Links
Toward a better drug against malaria
Date:6/6/2014

This news release is available in German.

A research team led by Prof. Dr. Carola Hunte of the University of Freiburg/ Germany has succeeded in describing how the antimalarial drug atovaquone binds to its target protein. The scientists used x-ray crystallography to determine the three-dimensional structure of the protein with the active substance bound. The drug combination atovaquone-proguanil (Malarone) is a medication used worldwide for the prevention and treatment of malaria. The data and the resulting findings concerning the mode of action of atovaquone could lead to improved medications against the tropical disease. Hunte and her team conducted the research at the Institute for Biochemistry and Molecular Biology of the Faculty of Medicine and the Centre for Biological Signalling Studies BIOSS at the University of Freiburg. The scientists published their findings in the journal Nature Communications.

Malaria is one of the most dangerous tropical diseases in the world. Anopheles mosquitoes infected with Plasmodium species unicellular parasites transmit the disease by biting. Atovaquone blocks a protein of the respiratory chain in the mitochondria, the power plants of the cell, thus killing off the parasites. However, the pathogen is susceptible to mutations so that drug resistant strains are arising and spreading. The Freiburg scientists have now paved the way for the development of improved drugs by revealing the precise binding mode of atovaquone to the target protein. They used the mitochondrial protein from cells of baker's yeast for their analyses due to its close resemblance to the parasitic protein.

The target protein of atovaquone is the third of four enzymes of the respiratory chain in the mitochondrion. The amino acid chains of the protein form a three-dimensional pocket. The molecule of the active substance fits perfectly into this pocket, binding to amino acids at numerous positions. These interactions are crucial for the effect atovaquone has in Plasmodium cells, ultimately leading to the death of the pathogen. The researchers conducted a protein sequence analysis, revealing that most of these docking sites are identical in the pathogen, baker's yeast and in human cells. Atovaquone forms several bonds that are specific to the Plasmodium protein in the open area of the binding pocket. In addition, the structural analysis revealed the molecular basis of resistances: Due to mutations that change the structure of the target protein, the substance cannot reach the designated binding mode it doesn't fit perfectly into the pocket anymore.

The data provides an important basis for improving antimalarial drugs. Scientists could now modify the molecular structure of atovaquone by means of structure-based drug design, ensuring that the active substance forms necessary bonds and that the pathogen is no longer resistant to it.


'/>"/>

Contact: Dr. Carola Hunte
carola.hunte@biochemie.uni-freiburg.de
49-761-203-5279
University of Freiburg
Source:Eurekalert  

Related biology news :

1. Towards an agroforestry policy in Indonesia
2. A step toward minute factories that produce medicine inside the body
3. Toward an alternative for antibiotics to fight bacterial infections?
4. Researchers moving towards ending threat of West Nile virus
5. Chromosomal translocations point the way toward personalized cancer care
6. Zebra fish point the way towards new therapies for amyotrophic lateral sclerosis
7. Moving toward regeneration
8. Towards computing with water droplets -- superhydrophobic droplet logic
9. Flu antibody’s one-handed grab may boost effort toward universal vaccine, new therapies
10. Toward an European open biodiversity knowledge management system
11. Plastic packaging industry is moving towards completely bio-based products
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Toward a better drug against malaria
(Date:2/3/2016)... Feb. 3, 2016 ... of the "Emotion Detection and Recognition ... and Others), Software Tools (Facial Expression, Voice ... Users,and Regions - Global forecast to 2020" ... --> http://www.researchandmarkets.com/research/d8zjcd/emotion_detection ) has announced the ...
(Date:2/2/2016)... 2016 Checkpoint Inhibitors for Cancer – ... Are you interested in the future of cancer ... inhibitors. Visiongain,s report gives those predictions to 2026 ... level. Avoid falling behind in data or ... revenues those emerging cancer therapies can achieve. There ...
(Date:2/2/2016)... Feb. 2, 2016  Based on its recent ... Sullivan recognizes US-based Intelligent Retinal Imaging Systems (IRIS) ... Award for New Product Innovation. IRIS, a prominent ... North America , is poised to set ... diabetic retinopathy market. The IRIS technology presents superior ...
Breaking Biology News(10 mins):
(Date:2/11/2016)... 11, 2016  Wellcentive today announced it has ... Oregon -based community care organization (CCO) with ... analytics, quality reporting and care management solutions and ... team of quality managers, analysts and care managers ... groups serving FamilyCare members. ...
(Date:2/11/2016)... , February 11, 2016 ... Corporation ("PositiveID" or "Company") (OTCQB: PSID), a life ... today that its Thermomedics subsidiary, which markets the ... its growth plan in January 2016, including entering ... increasing sequential monthly sales growth, and establishing several ...
(Date:2/11/2016)... ... February 11, 2016 , ... ... a new agreement with Bankok,Thailand-based Global Stem Cells Network (GSCN) to distribute exosome ... Latin American countries, including Mexico, Costa Rica, Dominican Republic, Colombia, Argentina, Nicaragua, Panama, ...
(Date:2/10/2016)... Early-career researchers from Indonesia ... Uganda and Yemen ... Indonesia , Nepal , ... Yemen are being honored for their accomplishments in nutrition, psychiatry, ... mentoring young women scientists who are pursuing careers in agriculture, biology and ...
Breaking Biology Technology: