Navigation Links
Toward a better drug against malaria
Date:6/6/2014

This news release is available in German.

A research team led by Prof. Dr. Carola Hunte of the University of Freiburg/ Germany has succeeded in describing how the antimalarial drug atovaquone binds to its target protein. The scientists used x-ray crystallography to determine the three-dimensional structure of the protein with the active substance bound. The drug combination atovaquone-proguanil (Malarone) is a medication used worldwide for the prevention and treatment of malaria. The data and the resulting findings concerning the mode of action of atovaquone could lead to improved medications against the tropical disease. Hunte and her team conducted the research at the Institute for Biochemistry and Molecular Biology of the Faculty of Medicine and the Centre for Biological Signalling Studies BIOSS at the University of Freiburg. The scientists published their findings in the journal Nature Communications.

Malaria is one of the most dangerous tropical diseases in the world. Anopheles mosquitoes infected with Plasmodium species unicellular parasites transmit the disease by biting. Atovaquone blocks a protein of the respiratory chain in the mitochondria, the power plants of the cell, thus killing off the parasites. However, the pathogen is susceptible to mutations so that drug resistant strains are arising and spreading. The Freiburg scientists have now paved the way for the development of improved drugs by revealing the precise binding mode of atovaquone to the target protein. They used the mitochondrial protein from cells of baker's yeast for their analyses due to its close resemblance to the parasitic protein.

The target protein of atovaquone is the third of four enzymes of the respiratory chain in the mitochondrion. The amino acid chains of the protein form a three-dimensional pocket. The molecule of the active substance fits perfectly into this pocket, binding to amino acids at numerous positions. These interactions are crucial for the effect atovaquone has in Plasmodium cells, ultimately leading to the death of the pathogen. The researchers conducted a protein sequence analysis, revealing that most of these docking sites are identical in the pathogen, baker's yeast and in human cells. Atovaquone forms several bonds that are specific to the Plasmodium protein in the open area of the binding pocket. In addition, the structural analysis revealed the molecular basis of resistances: Due to mutations that change the structure of the target protein, the substance cannot reach the designated binding mode it doesn't fit perfectly into the pocket anymore.

The data provides an important basis for improving antimalarial drugs. Scientists could now modify the molecular structure of atovaquone by means of structure-based drug design, ensuring that the active substance forms necessary bonds and that the pathogen is no longer resistant to it.


'/>"/>

Contact: Dr. Carola Hunte
carola.hunte@biochemie.uni-freiburg.de
49-761-203-5279
University of Freiburg
Source:Eurekalert  

Related biology news :

1. Towards an agroforestry policy in Indonesia
2. A step toward minute factories that produce medicine inside the body
3. Toward an alternative for antibiotics to fight bacterial infections?
4. Researchers moving towards ending threat of West Nile virus
5. Chromosomal translocations point the way toward personalized cancer care
6. Zebra fish point the way towards new therapies for amyotrophic lateral sclerosis
7. Moving toward regeneration
8. Towards computing with water droplets -- superhydrophobic droplet logic
9. Flu antibody’s one-handed grab may boost effort toward universal vaccine, new therapies
10. Toward an European open biodiversity knowledge management system
11. Plastic packaging industry is moving towards completely bio-based products
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Toward a better drug against malaria
(Date:3/23/2017)... Research and Markets has announced the addition of the ... to 2025" report to their offering. ... The Global Vehicle Anti-Theft System Market ... the next decade to reach approximately $14.21 billion by 2025. ... for all the given segments on global as well as regional ...
(Date:3/20/2017)... At this year,s CeBIT Chancellor Dr. Angela Merkel visited ... to the DERMALOG stand together with the Japanese Prime Minster Shinzo Abe. ... the largest German biometrics company the two government leaders could see the ... well as DERMALOG´s multi-biometrics system.   Continue Reading ... ...
(Date:3/9/2017)... , Australia , March 9, 2017 ... data at the prestigious World Lung Imaging Workshop at ... Andreas Fouras , was invited to deliver the latest ... medicine. This globally recognised event brings together leaders at ... the latest developments in lung imaging. ...
Breaking Biology News(10 mins):
(Date:3/28/2017)... , ... March 28, 2017 , ... ... and diminished effectiveness over time. A recent study published in STEM CELLS suggests ... stimulating subventricular zone (SVZ) stem cells to produce more neural cells. , ...
(Date:3/28/2017)... ... March 28, 2017 , ... Executive search firm, Slone Partners, ... Services. Harvill is a distinguished life sciences expert with a proven track record ... in a wide range of services related to laboratory testing and analysis for ...
(Date:3/27/2017)... 2017 Infectex Ltd., a Russian portfolio company of Maxwell Biotech ... SQ109 added to the standard drug therapy regimen in patients with multidrug-resistant pulmonary tuberculosis ... ( USA ) and the US National Institutes of Health. ... ... Fund Logo ...
(Date:3/27/2017)... Cambridge, MA (PRWEB) , ... March 27, 2017 ... ... published a method to engineer scalable and customizable vascular grafts in JoVE’s Video ... that may lead to new and improved ways of treating coronary artery disease ...
Breaking Biology Technology: