Navigation Links
Toughened silicon sponges may make tenacious batteries
Date:7/16/2012

HOUSTON (July 16, 2012) Researchers at Rice University and Lockheed Martin reported this month that they've found a way to make multiple high-performance anodes from a single silicon wafer. The process uses simple silicon to replace graphite as an element in rechargeable lithium-ion batteries, laying the groundwork for longer-lasting, more powerful batteries for such applications as commercial electronics and electric vehicles.

The work led by Sibani Lisa Biswal, an assistant professor of chemical and biomolecular engineering at Rice, and lead author Madhuri Thakur, a Rice research scientist, details the process by which Swiss cheese-like silicon "sponges" that store more than four times their weight in lithium can be electrochemically lifted off of wafers.

The research was reported online this month in the American Chemical Society journal Chemistry of Materials.

Silicon one of the most common elements on Earth is a candidate to replace graphite as the anode in batteries. In a previous advance by Biswal and her team, porous silicon was found to soak up 10 times more lithium than graphite.

Because silicon expands as it absorbs lithium ions, the sponge-like configuration gives it room to grow internally without degrading the battery's performance, the researchers reported. The promise that silicon sponges, with pores a micron wide and 12 microns deep, held for batteries was revealed in 2010 at Rice's Buckyball Discovery Conference by Thakur, Biswal, their Rice colleague Michael Wong, a professor of chemical and biomolecular engineering and of chemistry, and Steven Sinsabaugh, a Lockheed Martin Fellow. But even then Thakur saw room for improvement as the solid silicon substrate served no purpose in absorbing lithium.

In the new work, they discovered the electrochemical etching process used to create the pores can also separate the sponge from the substrate, which is then reused to make more sponges. The team noted that at least four films can be drawn from a standard 250-micron-thick wafer. Removing the sponge from the silicon substrate also eliminates a limiting factor to the amount of lithium that can be stored.

The team also found a way to make the pores 50 microns deep. Once lifted from the wafer, the sponges, now open at the top and bottom, were enhanced for conductivity by soaking them in a conductive polymer binder, pyrolyzed polyacrylonitrile (PAN).

The product was a tough film that could be attached to a current collector (in this case, a thin layer of titanium on copper) and placed in a battery configuration. The result was a working lithium-ion battery with a discharge capacity of 1,260 milliamp-hours per gram, a capability that should lead to batteries that last longer between charges.

The researchers compared batteries using their film before and after the PAN-and-bake treatment. Before, the batteries started with a discharge capacity of 757 milliamp-hours per gram, dropped rapidly after the second charge-discharge cycle and failed completely by cycle 15. The treated film increased in discharge capacity over the first four cycles typical for porous silicon, the researchers said and the capacity remained consistent through 20 cycles.

The researchers are investigating techniques that promise to vastly increase the number of charge-discharge cycles, a critical feature for commercial applications in which rechargeable batteries are expected to last for years.


'/>"/>

Contact: B.J. Almond
balmond@rice.edu
713-348-6770
Rice University
Source:Eurekalert

Related biology news :

1. Silicon Valley Energy Summit 2012
2. NOAA scholarship awarded to Jan Vicente to study the impact of ocean acidification on marine sponges
3. Nanosponges soak up oil again and again
4. Keeping electric vehicle batteries cool
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2017)... ALBANY, New York , April 19, 2017 /PRNewswire/ ... highly competitive, as its vendor landscape is marked by ... in the market is however held by five major ... and Safran. Together these companies accounted for nearly 61% ... majority of the leading companies in the global military ...
(Date:4/13/2017)... According to a new market research report "Consumer ... Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, and Region - ... to grow from USD 14.30 Billion in 2017 to USD 31.75 Billion ... ... MarketsandMarkets Logo ...
(Date:4/11/2017)... , April 11, 2017 NXT-ID, Inc. ... technology company, announces the appointment of independent Directors Mr. ... to its Board of Directors, furthering the company,s corporate governance ... Gino ... we look forward to their guidance and benefiting from their ...
Breaking Biology News(10 mins):
(Date:6/22/2017)... ... June 22, 2017 , ... ... the allergy specialists DST Diagnostische Systeme & Technologien GmbH, thereby expanding its product ... who suffers from hay fever, urticaria, asthma, atopic eczema or a food allergy. ...
(Date:6/22/2017)... , ... June 22, 2017 , ... ... network RegMedNet has produced a Spotlight series on “Cell ... reviews and perspectives by leading experts on the unique regulatory challenges of stem ...
(Date:6/22/2017)... (PRWEB) , ... June 22, 2017 , ... The first ... took 20 years until the first data on cross-contamination of human cell lines with ... been an increasing issue in cell culture labs and is associated with dramatic consequences ...
(Date:6/22/2017)... ... June 22, 2017 , ... Charm Sciences, Inc. is ... AMPH test was determined to be appropriate as a screening test at dairies and ... the Charm EZ system, and the Charm EZ Lite system. These systems are a ...
Breaking Biology Technology: