Navigation Links
Tomato pathogen genome may offer clues about bacterial evolution
Date:4/14/2008

Blacksburg, Va.. The availability of new genome sequencing technology has prompted a Virginia Tech plant scientist to test an intriguing hypothesis about how agricultures early beginnings may have impacted the evolution of plant pathogens.

Boris Vinatzer, assistant professor of plant pathology, physiology, and weed science in the College of Agriculture and Life Sciences, has received a $1 million, five-year Faculty Early Career Development (CAREER) award from the National Science Foundation (NSF) to investigate the pathogen that causes bacterial speck disease of tomatoes and to develop a new undergraduate course in microbial genomics.

Little is known about how plant pathogens, which were adapted to natural mixed-plant communities in pre-agriculture times, evolved into todays highly aggressive pathogens of crops cultivated in monoculture, Vinatzer said. To fill this void, this project aims at identifying the molecular evolutionary mechanisms that allow pathogens to specialize to specific plant species and to become more aggressive.

In 2007, Vinatzer sequenced the genome of a Pseudomonas syringae pv. tomato strain using technology from the Virginia Bioinformatics Institute (VBI) at Virginia Tech and funding from the universitys Institute for Biomedical and Public Health Sciences. The tomato pathogen was the first genome to be sequenced on the new Roche GS-FLX machine, which VBI had just purchased with Virginias Commonwealth Research Initiative funding.

That sequence, in addition to other preliminary data, allowed me to develop a hypothesis on the evolution of plant pathogenic bacteria since the beginning of agriculture, Vinatzer said. The hypothesis is that plant pathogenic bacteria evolved from relatively weak pathogens that caused disease in many plants to specialized highly virulent pathogens of single crops after entire fields of the same plant species became available to them in agricultural fields. Importantly, understanding the mechanisms pathogens used to adapt to crops in the past will help us predict how they might change again in the future and allow us to breed or engineer crops for long-lasting disease resistance.

Vinatzers approach combines comparative evolutionary genomics, population genetics, and microbial genetics and leverages the latest advances in the biological sciences and the computer sciences. He is collaborating with Joo Setubal, associate professor and deputy director at VBI.


'/>"/>

Contact: Michael Sutphin
msutphin@vt.edu
540-231-6975
Virginia Tech
Source:Eurekalert

Related biology news :

1. Tomato pathogen genome may offer clues about bacterial evolution at dawn of agriculture
2. Understanding, combating foodborne pathogens E. coli 0157 and salmonella
3. New magnetic separation technique might detect multiple pathogens at once
4. New system would use rotating magnetic field to detect pathogens
5. K-State specialist in tick-borne pathogens receives $1.8 million grant
6. Pathogens use previously undescribed mechanism to sabotage host immune system
7. Can interacting pathogens explain disease patterns?
8. Breakthrough research turns the tide on water-borne pathogen
9. Technology uses live cells to detect food-borne pathogens, toxins
10. Researcher discovers pathway plants use to fight back against pathogens
11. Unravelling new complexity in the genome
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/16/2016)... , Nov. 16, 2016 Sensory ... experience and security for consumer electronics, and ... financial and retail industry, today announced a global ... convenient way to authenticate users of mobile banking ... TrulySecure™ software which requires no specialized ...
(Date:11/14/2016)... Nov. 14, 2016  xG Technology, Inc. ("xG" or ... critical wireless communications for use in challenging operating environments, ... 30, 2016. Management will hold a conference call to ... p.m. Eastern Time (details below). Key Recent ... $16 million binding agreement to acquire Vislink Communication Systems. ...
(Date:6/22/2016)... June 22, 2016  The American College of Medical Genetics ... Executive Magazine as one of the fastest-growing trade shows ... at the Bellagio in Las Vegas . ... percentage of growth in each of the following categories: net ... and number of attendees. The 2015 ACMG Annual Meeting was ...
Breaking Biology News(10 mins):
(Date:11/30/2016)... CA (PRWEB) , ... November 30, 2016 , ... ... a new moving magnet Voice Coil Actuator with a flexure design that ensures ... long life with cost-effective pricing and is ideally suited where extreme precision is ...
(Date:11/30/2016)... 2016  The Allen Institute for Cell Science ... publicly available collection of gene edited, fluorescently tagged ... cellular structures with unprecedented clarity. Distributed through the ... are a crucial first step toward visualizing the ... makes human cells healthy and what goes wrong ...
(Date:11/30/2016)... 2016 Part of 5m$ Investment in ... ... Aptuit, LLC today announced that it had successfully completed the ... compounds have increased the Screening Collection to over 400,000. The ... capabilities of the company. This expansion, complemented by new robotics ...
(Date:11/30/2016)... ... November 30, 2016 , ... On 28 November 2016, the International Union of ... nihonium (Nh), moscovium (Mc), tennessine (Ts), and oganesson (Og), respectively for element 113, 115, ... proposed by the discoverers have been approved by the IUPAC Bureau. The IUPAC Council ...
Breaking Biology Technology: