Navigation Links
Together we stand: bacteria organize to survive hostile zones

Using an innovative device with microscopic chambers, researchers from four institutions, including Johns Hopkins, have gleaned important new information about how bacteria survive in hostile environments by forming antibiotic-resistant communities called biofilms. These biofilms play key roles in cystic fibrosis, urinary tract infections and other illnesses, and the researchers say their findings could help in the development of new treatments and preventive measures.

There is a perception that single-celled organisms are asocial, but that is misguided, said Andre Levchenko, assistant professor of biomedical engineering in The Johns Hopkins Universitys Whiting School of Engineering and an affiliate of the university's Institute for NanoBioTechnology. When bacteria are under stresswhich is the story of their livesthey team up and form this collective called a biofilm. If you look at naturally occurring biofilms, they have very complicated architecture. They are like cities with channels for nutrients to go in and waste to go out.

With a better understanding of how and why bacteria form biofilms, researchers may be able to disrupt activity in the bacterial communities and block harmful effects on their human hosts. The teams findings were detailed in an article published in the November 2007 issue of the journal Public Library of Science Biology.

In the article, the researchers from Johns Hopkins; Virginia Tech; the University of California, San Diego; and Lund University in Sweden reported on the observation of the bacteria E. coli growing in the cramped conditions of a new microfluidic device. The device, which allows scientists to use nanoscale volumes of cells in solution, contains a series of tiny chambers of various shapes and sizes that keep the bacteria uniformly suspended in a culture medium.

Levchenko and his colleagues recorded the behavior of single layers of cells using real-time microscopy. Computational models validated their experimental results and could predict the behavior of other bacterial species under similar pressures. We were surprised to find that cells growing in chambers of all sorts of shapes gradually organized themselves into highly regular structures, Levchenko said. The computational model helped explain why this was happening and how it might be used by the cells to increase chances of survival.

The microfluidic device, which was designed and fabricated in collaboration with Alex Groismans laboratory at UCSD, allows the cells to flow freely into and out of the chambers. Test volumes in the chambers were in the nano-liter range, allowing visualization of single E. coli cells. Ann Stevens laboratory at Virginia Tech helped to generate new strains of bacteria that permitted visualization of individual cells grown in a single layer.

Hojung Cho, a Johns Hopkins biomedical engineering doctoral student from Levchenkos lab and lead author of the journal article, captured on video the gradual self-organization and eventual construction of bacterial biofilms over a 24-hour period, using real-time microscopy techniques. The experiments were matched to modeling analysis developed in collaboration with Chos colleagues at Lund. Images were analyzed using tools developed with the participation of Bruno Jedynak of the Johns Hopkins Center for Imaging Science.

Observation using microscopy revealed that the longer the packed cell population resided in the chambers, the more ordered the biofilm structure became, Levchenko said. Being highly packed in a tiny space can be very challenging for cells, so that any type of a strategy to help colony survival can be very important, he adds.

Levchenko also noted that rod-shaped E. coli that were too short or too long typically either did not organize well or did not avoid stampede-like blockages toward the exits. The shape of the confining space also strongly affected the cell organization in a colony, with highly disordered groups of cells found at sharp corners but not in the circular shaped microchambers.

Understanding how bacteria produce biofilms is important to researchers developing better ways to combat the diseases associated with them, Levchenko pointed out. For example, people who suffer from cystic fibrosisa genetic disorder that affects the mucus lining of the lungsare susceptible to a species of bacteria that colonizes the lungs. Patients choke on the colonys byproducts. Chronic urinary tract infections result from bacterial communities that develop inside human cells. And biofilms cause problems in tissues where catheters have been inserted or where sutures have been used.

You can put a patient on antibiotics, and it may seem that the infection has disappeared. But in a few months, it reappears, and it is usually in an antibiotic-resistant form, Levchenko says. To explore possible treatments, Levchenko said, the microfluidic device could be used as a tool to rapidly and simultaneously screen different types of drugs for their ability to prevent biofilms.


Contact: Mary Spiro
Johns Hopkins University  

Related biology news :

1. Legionnaires bacterial proteins work together to survive
2. Shuttle brings space-grown strep bacteria back for study
3. The worlds oldest bacteria
4. Bacteria from sponges make new pharmaceuticals
5. Boston University biomedical engineers find chink in bacterias armor
6. University of Leicester scientists discover technique to help friendly bacteria
7. Spaceflight shown to alter ability of bacteria to cause disease
8. A tiny pinch from a z-ring helps bacteria cells divide
9. Scripps research team blocks bacterial communication system to prevent deadly staph infections
10. NSF awards Stevens team $1 million for research on smart, bacteria-repellent nanohydrogels
11. Chemical compound present in detergents produce bacteria alterations in agricultural soils
Post Your Comments:
Related Image:
Together we stand: bacteria organize to survive hostile zones
(Date:4/26/2016)... DUBLIN , April 27, 2016 ... of the  "Global Multi-modal Biometrics Market 2016-2020"  report ... ) , The analysts forecast ... a CAGR of 15.49% during the period 2016-2020.  ... a number of sectors such as the healthcare, ...
(Date:4/14/2016)... 14, 2016 BioCatch ™, ... today announced the appointment of Eyal Goldwerger ... Goldwerger,s leadership appointment comes at a time ... the deployment of its platform at several of the ... which discerns unique cognitive and physiological factors, is a ...
(Date:3/29/2016)... LegacyXChange, Inc. (OTC: LEGX ... Protect are pleased to announce our successful effort to ... of writing instruments, ensuring athletes signatures against counterfeiting and ... athletes on LegacyXChange will be assured of ongoing proof ... Bill Bollander , CEO states, "By inserting ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016  Blueprint Bio, a ... discoveries to the medical community, has closed its Series ... Matthew Nunez . "We have received a ... the capital we need to meet our current goals," ... provide us the runway to complete validation on the ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... at the Pennsylvania Convention Center and will showcase its product’s latest features from ... also be presenting a scientific poster on Disrupting Clinical Trials in The Cloud ...
(Date:6/23/2016)... SAN FRANCISCO , June 22, 2016  Amgen ... platinum sponsorship of the QB3@953 life sciences ... improve human health. The shared laboratory space at QB3@953 ... startups overcome a key obstacle for many early stage ... As part of the sponsorship, Amgen launched two "Amgen ...
(Date:6/22/2016)... Research and Markets has announced the addition ... their offering. The global ... billion in 2013. The market is expected to grow at a ... 2020, increasing from $50.6 billion in 2015 to $96.6 billion in ... forecast period (2015 to 2020) are discussed. As well, new products ...
Breaking Biology Technology: