Navigation Links
Tiny tool to control growing blood vessels opens new potential in tumor research

Researchers at Uppsala University have developed a new tool that makes it possible to study the signals in the body that control the generation of blood vessels. The researchers' findings, published in the new issue of Lab on a Chip, enable scientists to determine what signals in the body attract or repel blood vessels, knowledge that is extremely interesting in tumor research.

The new invention is a tiny cell cultivation chamber of silicon plastic in which researchers can cultivate blood-vessel-rich tissue and simultaneously create targeted signals that instruct the vessels to go in a certain direction. This is of great interest to the international research world.

Angiogenesis is the process in the body that forms new blood cells, a process that is vital for life but can also be fatal in the worst case. Angiogenesis is desirable, for instance, in connection with wound healing, when new tissue needs to be grown. Undesirable angiogenesis, on the other hand, often occurs in connection with tumor growth. Through the newly generated blood vessels in the vicinity of the tumor, tumor cells receive nourishment and oxygen, which creates the conditions for tumor growth. One way to limit tumor growth may therefore be to counteract the new formation of blood vessels in the tumor, thereby cutting off the supply of nourishment and oxygen to the diseased area.

The scientists Irmeli Berkefors and Johan Kreuger's research is geared toward understanding the signals that control both normal and pathological angiogenesis. To understand this, it is important to construct experimental model systems in which they can study how concentration gradients of various signal proteins affect the direction in which a vessel grows.

"Our new method enables us to recreate and study gradients that control how blood vessels grow in the body. This is something of a research breakthrough. Now we can systematically evaluate newly identified signals that we hope can ultimately be used to control angiogenesis," says Johan Kreuger.

The method can also be used to unearth new knowledge regarding how tumor cells and nerve cells grow and move toward gradients of signal proteins.


Contact: Johan Kreuger
Uppsala University

Related biology news :

1. Forget the freezer: Research suggests novel way to control water behavior
2. Controlling cucumber beetles organically
3. Nanotubes tapestry controls its growth
4. Control of blood vessels a possible weapon against obesity
5. Vitamins C and E and beta carotene again fail to reduce cancer risk in randomized controlled trial
6. Organic plant waste proves effective weed control for citrus trees
7. Motor nerve targeting to limb muscles is controlled by ephrin proteins
8. New satellite data reveal impact of Olympic pollution controls
9. Brain enzyme may play key role in controlling appetite and weight gain
10. Fractional dose of scarce meningitis vaccine may be effective in outbreak control
11. New control knobs for stem cells identified
Post Your Comments:
Related Image:
Tiny tool to control growing blood vessels opens new potential in tumor research
(Date:4/5/2017)... 4, 2017 KEY FINDINGS The ... at a CAGR of 25.76% during the forecast period ... primary factor for the growth of the stem cell ... MARKET INSIGHTS The global stem cell market ... and geography. The stem cell market of the product ...
(Date:3/30/2017)... Trends, opportunities and forecast in this market ... (fingerprint, AFIS, iris recognition, facial recognition, hand geometry, vein ... use industry (government and law enforcement, commercial and retail, ... others), and by region ( North America ... Pacific , and the Rest of the World) ...
(Date:3/24/2017)... , Mar 24, 2017 Research and ... Access System Market Analysis & Trends - Industry Forecast to 2025" ... ... to grow at a CAGR of around 15.1% over the next ... This industry report analyzes the market estimates and forecasts for all ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... the three Winners and six Finalists of the 2017 Blavatnik Regional Awards for ... Blavatnik Family Foundation and administered by the New York Academy of Sciences to ...
(Date:10/12/2017)... San Diego, CA (PRWEB) , ... ... ... BioInformatics ( ) has launched Rosalind™, the first-ever genomics analysis platform ... eliminating all bioinformatics complexity. Named in honor of pioneering researcher Rosalind Franklin, ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... will be hosting a Webinar titled, “Pathology is going digital. Is your lab ... digital pathology adoption best practices and how Proscia improves lab economics and realizes ...
(Date:10/11/2017)... ... 11, 2017 , ... Singh Biotechnology today announced that the ... its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B VHH13 single ... the cell membrane and bind intracellular STAT3 and inhibit its function. Dysregulation of ...
Breaking Biology Technology: