Navigation Links
Tiny genetic differences have huge consequences: McGill researchers
Date:1/18/2008

This release is available in French.

A study led by McGill University researchers has demonstrated that small differences between individuals at the DNA level can lead to dramatic differences in the way genes produce proteins. These, in turn, are responsible for the vast array of differences in physical characteristics between individuals. The study, part of the Genome Regulators in Disease (GRID) Project funded by Genome Canada and Genome Quebec, was led by Dr. Jacek Majewski of McGill Universitys Department of Human Genetics and the McGill University and Genome Quebec Innovation Centre, and first-authored by his research associate Dr. Tony Kwan. It was published January 13 in the journal Nature Genetics.

The study was originally initiated by Dr. Tom Hudson, former director of the McGill University and Genome Quebec Innovation Centre, and drew upon the data collected by the vast HapMap (Haplotype Map) Project, a global comparative map of the human genome, which Hudson and his colleagues were instrumental in completing.

This study solves in part the mystery of how a relatively small number of differences within DNA protein coding sequences could be responsible for the enormous variety of phenotypic differences between individuals. It had previously been shown that individual differences reside in simple, relatively small variations in the DNA sequence called single nucleotide polymorphisms (SNPs, often pronounced snips), which exist primarily in the junk code of the DNA not previously known to have any profound genetic effect.

There are many SNPs, explained Dr. Majewski. If you add them all together, you'd expect that two individuals would differ at more than a million of those positions. So we have a million or more small differences that distinguish you and me, and yet it would be very hard to explain all the phenotypic differences in the way we look, grow, and behave just by the handful of these protein coding differences.

Majewski and his colleagues have demonstrated that the natural processing of messenger RNA (mRNA), via a process called splicing, is genetically controlled by these SNPs. The SNPs in certain individuals lead to changes in splicing and result in the production of drastically altered forms of the protein. These out-of-proportion consequences may lead to the development of genetic diseases such as cystic fibrosis and Type 1 diabetes.


'/>"/>

Contact: Mark Shainblum
mark.shainblum@mcgill.ca
514-398-2189
McGill University
Source:Eurekalert

Related biology news :

1. Genetic Alliance names Genetic Testing as its official journal
2. Should children be permitted to get genetic testing for BRCA 1/2 mutations?
3. Genetically modified carrots provide more calcium
4. UBC discovery unlocks tree genetics, gives new hope for pine beetle defense
5. New method developed to identify genetic determinants of Alzheimers disease
6. Study suggests genetic connection between short stature and arthritis
7. New genetic variants associated with lipid levels, risk for coronary artery disease
8. Scientists associate 6 new genetic variants with heart disease risk factor
9. Dissecting the genetic components of adaptation of E. coli to the mouse gut
10. Researchers move 2 steps closer to understanding genetic underpinnings of autism
11. Genetic breakthrough offers promise in tackling kidney tumors
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/11/2016)... DENVER , Feb. 11, 2016  According to ... are officially mainstream. More than 200 fingerprint, iris, ... Q1 2013 under 70 brand names. This includes ... Vivo, and ZTE. Acuity projects that 600 million ... of the global installed base. Maxine ...
(Date:2/11/2016)... 11, 2016  Vigilant Solutions announces today that its license ... used by Lee,s Summit Police Department ... and arrest of a homicide suspect. Kansas ... around 65 square miles and is home to roughly 100,000 ... a single mobile license plate reader system and also leverages ...
(Date:2/10/2016)... February 10, 2016 ... to 2016 iris recognition market report, combined ... is more widely accepted for border control. ... fingerprint and iris recognition technology in a ... avoid purchasing two individual biometrics devices. ...
Breaking Biology News(10 mins):
(Date:2/12/2016)... SAN DIEGO , Feb. 12, 2016 Biocom, ... life science community, took a group of San ... as part of its 2016 Precision Medicine Advocacy Fly-In. ... at the Food and Drug Administration (FDA), the Centers for ... (NIH), as well as San Diego U.S. Representatives Susan ...
(Date:2/12/2016)... ... February 12, 2016 , ... ... World Congress Center in Atlanta, Georgia, will include 848 exhibitors (count as of ... will be displaying products and services used by the scientific community in industrial, ...
(Date:2/12/2016)... , Feb. 12, 2016  BD (Becton, Dickinson ... medical technology company, today announced the launch of the ... Biology and Technology (AGBT) Meeting. ... enables genomic research by providing cost effective NGS library ... is a high-throughput, fully integrated, next generation sequencing (NGS) ...
(Date:2/12/2016)... , Feb. 12, 2016  PTC Therapeutics, Inc. ... annual STRIVE (Strategies to Realize Innovation, Vision and ... (DMD). STRIVE provides funds to patient advocacy organizations ... make meaningful contributions to the rare disease community ... of future patient advocates. Mary ...
Breaking Biology Technology: