Navigation Links
Tiny genetic differences have huge consequences: McGill researchers
Date:1/18/2008

This release is available in French.

A study led by McGill University researchers has demonstrated that small differences between individuals at the DNA level can lead to dramatic differences in the way genes produce proteins. These, in turn, are responsible for the vast array of differences in physical characteristics between individuals. The study, part of the Genome Regulators in Disease (GRID) Project funded by Genome Canada and Genome Quebec, was led by Dr. Jacek Majewski of McGill Universitys Department of Human Genetics and the McGill University and Genome Quebec Innovation Centre, and first-authored by his research associate Dr. Tony Kwan. It was published January 13 in the journal Nature Genetics.

The study was originally initiated by Dr. Tom Hudson, former director of the McGill University and Genome Quebec Innovation Centre, and drew upon the data collected by the vast HapMap (Haplotype Map) Project, a global comparative map of the human genome, which Hudson and his colleagues were instrumental in completing.

This study solves in part the mystery of how a relatively small number of differences within DNA protein coding sequences could be responsible for the enormous variety of phenotypic differences between individuals. It had previously been shown that individual differences reside in simple, relatively small variations in the DNA sequence called single nucleotide polymorphisms (SNPs, often pronounced snips), which exist primarily in the junk code of the DNA not previously known to have any profound genetic effect.

There are many SNPs, explained Dr. Majewski. If you add them all together, you'd expect that two individuals would differ at more than a million of those positions. So we have a million or more small differences that distinguish you and me, and yet it would be very hard to explain all the phenotypic differences in the way we look, grow, and behave just by the handful of these protein coding differences.

Majewski and his colleagues have demonstrated that the natural processing of messenger RNA (mRNA), via a process called splicing, is genetically controlled by these SNPs. The SNPs in certain individuals lead to changes in splicing and result in the production of drastically altered forms of the protein. These out-of-proportion consequences may lead to the development of genetic diseases such as cystic fibrosis and Type 1 diabetes.


'/>"/>

Contact: Mark Shainblum
mark.shainblum@mcgill.ca
514-398-2189
McGill University
Source:Eurekalert

Related biology news :

1. Genetic Alliance names Genetic Testing as its official journal
2. Should children be permitted to get genetic testing for BRCA 1/2 mutations?
3. Genetically modified carrots provide more calcium
4. UBC discovery unlocks tree genetics, gives new hope for pine beetle defense
5. New method developed to identify genetic determinants of Alzheimers disease
6. Study suggests genetic connection between short stature and arthritis
7. New genetic variants associated with lipid levels, risk for coronary artery disease
8. Scientists associate 6 new genetic variants with heart disease risk factor
9. Dissecting the genetic components of adaptation of E. coli to the mouse gut
10. Researchers move 2 steps closer to understanding genetic underpinnings of autism
11. Genetic breakthrough offers promise in tackling kidney tumors
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/14/2017)... June 15, 2017  IBM (NYSE: IBM ) is introducing ... event dedicated to developing collaboration between startups and global businesses, ... 15-17. During the event, nine startups will showcase the solutions ... various industries. France ... market, with a 30 percent increase in the number of ...
(Date:5/16/2017)... 16, 2017  Veratad Technologies, LLC ( www.veratad.com ), ... and identity verification solutions, announced today they will participate ... May 15 thru May 17, 2017, in ... Trade Center. Identity impacts the lives ... today,s quickly evolving digital world, defining identity is critical ...
(Date:5/6/2017)... 5, 2017 RAM Group , ... new breakthrough in biometric authentication based on a ... properties to perform biometric authentication. These new sensors are ... created by Ram Group and its partners. This sensor ... supply chains and security. Ram Group is a ...
Breaking Biology News(10 mins):
(Date:9/21/2017)... , ... September 21, 2017 , ... ... office, which includes executive, engineering and manufacturing functions to The LaunchPort™ Accelerator at ... Factory™, provide a full range of manufacturing and business services to its Residents. ...
(Date:9/21/2017)... (PRWEB) , ... September 21, 2017 , ... ... clinical client portal. Each relaunch of the portal includes new features that facilitate ... medical device companies seek to remain at the forefront of medical advancements, they ...
(Date:9/21/2017)... , ... September 21, 2017 , ... ... neon green this month, the response was swift and efficient thanks to the ... ). RRWQG is made up of more than 50 stakeholders, including officials from ...
(Date:9/20/2017)... ... September 20, 2017 , ... ... with Koch Agronomic Services (Koch) to feature new innovations aimed at helping farmers ... first quarter 2018. American Farmer airs Tuesdays at 8:30aET on RFD-TV. Check your ...
Breaking Biology Technology: