Navigation Links
Tiny acts of microbe justice help reveal how nature fights freeloaders

The idea of everyone in a community pitching in is so universal that even bacteria have a system to prevent the layabouts of their kind from enjoying the fruit of others' hard work, Princeton University researchers have discovered.

Groups of the bacteria Vibrio cholerae deny loafers their unjust desserts by keeping the food generated by the community's productive members away from V. cholerae that attempt to live on others' leftover nutrients, the researchers report in the journal Current Biology. The researchers found that individual bacteria produce a thick coating around themselves to prevent nutrients from drifting over to the undeserving. Alternatively, the natural flow of fluids over the surface of bacterial communities can wash away excess food before the freeloaders can indulge.

Likely common among bacteria, this act of microscopic justice not only ensures the survival of the group's most industrious members, but also could be used for agriculture, fuel production and the treatment of bacterial infections such as cholera, explained first author Knut Drescher, a postdoctoral research fellow in the lab of senior author Bonnie Bassler, the Squibb Professor in Molecular Biology and department chair.

By encouraging this action, scientists could increase the efficiency of any process that relies on bacteria to break down organic materials, such as plant materials into biofuels, or cellulose into paper products, Drescher said. For treating a disease, the mechanism could be counteracted to effectively starve the more productive bacteria and weaken the infection.

"We could use our discovery to develop strategies that encourage the proliferation of microbes that digest dead organic material into useful products," Drescher said. "Such an approach will be useful for optimizing nutrient recycling for agriculture, bioremediation, industrial cleanup, or making products for industry or medicine."

The Princeton findings also provide insight into how all microbes potentially preserve themselves by imposing fairness and resolving the "public goods dilemma," in which a group must work together while also avoiding exploitation by their self-serving individuals, said co-lead author Carey Nadell, a postdoctoral research associate in Bassler's lab.

"The public goods dilemma is a central problem in the history of life on Earth, during which single cells have emerged as collectives of genes, multicellular organisms have emerged as collectives of cells, and societies have emerged as collectives of multicellular organisms," Nadell said.

"At each of these transitions in complexity there has been and remains the threat of exploitation by single members pursuing their own interests at the expense of the collective as a whole," Nadell said. "Clarifying how exploitation can be averted is therefore critical to understanding how life has taken the various forms that exist today."

Like all bacteria, V. cholerae strains of which can cause cholera frequently lives in dense communities called biofilms. Also like other bacteria, V. cholerae secretes enzymes that break down the solid organic carbon- and nitrogen-containing molecules of which living things are composed so that the bacterium can feast on the components within. But not every individual bacterium will produce enzymes some will simply feed on what their organic-compound digesting neighbors produce. The researchers found two mechanisms by which this leeching is halted.

The vigilance of V. cholerae and other bacteria may also carry a larger benefit. The nitrogen and carbon that make up most of the planet's breathable air largely come from the digestion of organic materials by bacteria.

The researchers studied V. cholerae as it feasted on its preferred victual, chitin, a sugar-based molecule and the central element of many marine cells, exoskeletons and other appendages. The researchers write that sea animals alone shed an estimated 110 billion tons of chitin each year yet hardly any of it makes it to the ocean floor. Instead, the detritus is consumed by V. cholerae and other marine bacteria with its elements being recycled into the biosphere.

"If V. cholerae's system of extracellular digestion were compromised by exploitation," Nadell said, "the world's supply of carbon and nitrogen would become sequestered on a rapid geological timescale."


Contact: Morgan Kelly
Princeton University

Related biology news :

1. Sex matters for microbes
2. Oil- and metal-munching microbes dominate deep sandstone formations
3. The garden microbe with a sense of touch
4. Gut microbes affect MicroRNA response to bacterial infection
5. At AGU: Shale sequestration, water for energy & soil microbes
6. Argonne partners with Metropolitan Water Reclamation District to study Chicago River microbe population
7. Microbiologists reveal unexpected properties of methane-producing microbe
8. Special issue of Gut Microbes on Helicobacter pylori
9. Gut microbes in healthy kids carry antibiotic resistance genes
10. Lignin-feasting microbe holds promise for biofuels
11. Montana State team overcomes challenges, proves that microbes swim to hydrogen gas
Post Your Comments:
Related Image:
Tiny acts of microbe justice help reveal how nature fights freeloaders
(Date:5/20/2016)... MINNEAPOLIS , May 20, 2016  VoiceIt ... technology partnership with VoicePass. By working ... user experience.  Because VoiceIt and VoicePass take slightly ... two engines increases both security and usability. ... expressed excitement about this new partnership. ...
(Date:5/9/2016)... 2016 Elevay is currently known ... freedom for high net worth professionals seeking travel for ... connected world, there is still no substitute for a ... sealing your deal with a firm handshake. This is ... advantage of citizenship via investment programs like those offered ...
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted to ... of 2015 The gross margin was 49% (27) ... operating margin was 40% (-13) Earnings per share rose ... was SEK 249.9 M (21.2) , Outlook   ... The operating margin for 2016 is estimated to exceed ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016  Liquid Biotech ... funding of a Sponsored Research Agreement with The ... cells (CTCs) from cancer patients.  The funding will ... levels correlate with clinical outcomes in cancer patients ... will then be employed to support the design ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of ... the Cary 5000 and the 6000i models are higher end machines that use the ... of the spectrophotometer’s light beam from the bottom of the cuvette holder. , ...
(Date:6/23/2016)... 23, 2016   Boston Biomedical , an ... designed to target cancer stemness pathways, announced that ... Orphan Drug Designation from the U.S. Food and ... cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin is ... inhibit cancer stemness pathways by targeting STAT3, and ...
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, Inc. is ... has received AOAC Research Institute approval 061601. , “This is another AOAC-RI approval ... Bob Salter, Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods ...
Breaking Biology Technology: