Navigation Links
Tiny MIT ecosystem may shed light on climate change

CAMBRIDGE, Mass. MIT researchers have created a microbial ecosystem smaller than a stick of gum that sheds new light on the plankton-eat-plankton world at the bottom of the aquatic food chain.

The work, reported in the January print issue of American Naturalist, may lead to better predictions of marine microbes' global-scale influence on climate.

Through photosynthesis and uptake of carbon compounds, diverse planktonic marine microorganisms too small to be seen with the naked eye help regulate carbon flux in the oceans. Carbon flux refers to the rate at which energy and carbon are transferred from lower to higher levels of the marine food web, and it may have implications for commercial fisheries and other ocean-dependent industries.

The MIT study is one of the first detailed explorations of how sea creatures so small 500,000 can fit on the head of a pin find food in an ocean-size environment.

Besides showing that microbes' swimming and foraging is much more sophisticated and complex than previously thought, the work also indicates that organic materials may move through the oceans' microbial food web at higher-than-expected rates, via a domino effect of resource patch formation and exploitation, said co-author Justin R. Seymour, postdoctoral fellow in the MIT Department of Civil and Environmental Engineering (CEE).

Using the new technology of microfluidics, Seymour and colleagues Roman Stocker, the Doherty Assistant Professor of Ocean Utilization in CEE, and MIT mechanical engineering graduate student Marcos devised a clear plastic device about the size and shape of a microscope slide.

Depending on the organism being studied, nutrients or prey are injected with a syringe-based pump into the device's microfluidic channel, which is 45 mm long, 3 mm wide and 50 micrometers deep. "While relying on different swimming strategies, all three organisms exhibited behaviors which permitted efficient and rapid exploitation of resource patches," Stocker said. It took bacteria less than 30 seconds, for example, to congregate within a patch of organic nutrients.

This new laboratory tool creates a microhabitat where tiny sea creatures live, swim, assimilate chemicals and eat each other. It provides the first methodological, sub-millimeter scale examination of a food web that includes single-celled phytoplankton, bacteria and protozoan predators in action.

"Rather than simply floating in the ocean and passively taking up the chemicals required for growth, many microbes exhibit sophisticated behaviors as they forage in an environment where patches of nutrients and resources are few and far between," Seymour said.

Oceanographic ecological research has typically taken place at much larger scales because of the difficulty of measuring the behavioral responses of small populations of microorganisms in very small volumes of seawater.

"To understand how environmental fluctuations affect the ecology of populations, it is imperative to understand the foraging abilities and behavior of marine microbes at environmentally relevant scales," the authors wrote.


Contact: Elizabeth Thomson
Massachusetts Institute of Technology

Related biology news :

1. Study shows genetically engineered corn could affect aquatic ecosystems
2. Genetically engineered corn may harm stream ecosystems
3. At the root of nutrient limitation, ecosystems are not as different as they seem
4. New study finds biodiversity conservation secures ecosystem services for people
5. US-French research team to barcode an entire ecosystem
6. Resilience concepts poised to aid management of coastal marine ecosystems
7. Dartmouth researchers alarmed by levels of mercury and arsenic in Chinese freshwater ecosystem
8. Nonlinear ecosystem response points to environmental solutions
9. Scientists outline novel approach to ecosystem management
10. First map of threats to marine ecosystems shows all the worlds oceans are affected
11. Map is first to track global human influences on ocean ecosystems
Post Your Comments:
(Date:11/17/2015)... , November 17, 2015 ... au 19 novembre  2015.  --> Paris ... --> DERMALOG, le leader de l,innovation biométrique, ... la fois passeports et empreintes sur la même surface ... les passeports et l,autre pour les empreintes digitales. Désormais, ...
(Date:11/12/2015)... 12, 2015  A golden retriever that stayed healthy ... (DMD) has provided a new lead for treating this ... Broad Institute of MIT and Harvard and the University ... Cell, pinpoints a protective gene ... disease,s effects. The Boston Children,s lab of Lou ...
(Date:11/10/2015)... , Nov. 10, 2015  In ... on the basis of product, type, application, ... included in this report are consumables, services, ... report are safety biomarkers, efficacy biomarkers, and ... this report are diagnostics development, drug discovery ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... , Nov. 30, 2015  Northwest Biotherapeutics (NASDAQ: ... developing DCVax® personalized immune therapies for solid tumor cancers, ... an additional independent director, and the Company welcomes ... allegations in a recent anonymous internet report on NW ... initiatives. Linda Powers stated, "We agree ...
(Date:11/27/2015)... PA (PRWEB) , ... November 27, 2015 , ... ... Technical Program that includes over 2,000 technical presentations offered in symposia, oral ... chemistry and applied spectroscopy, covers a wide range of applications such as, but ...
(Date:11/25/2015)...  PharmAthene, Inc. (NYSE MKT: PIP) announced  today that ... plan (Rights Plan) in an effort to preserve the ... Section 382 of the Internal Revenue Code (Code). ... of its NOLs could be substantially limited if the ... 382 of the Code. In general, an ownership change ...
(Date:11/25/2015)... , Nov. 25, 2015 /PRNewswire/ - Aeterna Zentaris Inc. ... its business and prospects remain fundamentally strong and ... (zoptarelin doxorubicin) recently received DSMB recommendation to continue ... following review of the final interim efficacy and ... Primary Endpoint in men with heavily pretreated castration- ...
Breaking Biology Technology: