Navigation Links
Tilted acoustic tweezers separate cells gently
Date:8/25/2014

Precise, gentle and efficient cell separation from a device the size of a cell phone may be possible thanks to tilt-angle standing surface acoustic waves, according to a team of engineers.

"For biological testing we often need to do cell separation before analysis," said Tony Jun Huang, professor of engineering science and mechanics. "But if the separation process affects the integrity of the cells, damages them in any way, the diagnosis often won't work well."

Tilted-angle standing surface acoustic waves can separate cells using very small amounts of energy. Unlike conventional separation methods that centrifuge for 10 minutes at 3000 revolutions per minute, the surface acoustic waves can separate cells in a much gentler way. The power intensity and frequency used in this study are similar to that used in ultrasonic imaging, which has proven to be extremely safe, even for fetuses. Also, each cell experiences the acoustic wave for only a fraction of a second, rather than 10 minutes.

"The tilted-angle standing surface acoustic waves method has the least disturbance or disruption to the living cells being separated compared to other available methods so far," said Ming Dao, principal research scientist, materials science and engineering, Massachusetts Institute of Technology. "It adds to the portfolio of latest technology developments for separating such things as rare circulating tumor cells in the blood."

Previous work by Huang showed that acoustic tweezers work by setting up a standing surface acoustic wave. If two sound sources are placed opposite each other and each emits the same wavelength of sound, there will be a location where the opposing sounds cancel each other. Because sound waves have pressure, they can push very small objects, so a cell or nanoparticle will move with the sound wave until it reaches the location where there is no longer movement.

If the sound sources are at right angles to each other, an evenly spaced set of rows and columns form in a checkerboard pattern. In this case, the team from Penn State, MIT and Carnegie Mellon University used simulation programs to determine the angle the sound sources should be tilted at to produce the best separation. They report their results today (Aug. 25) online in the Proceedings of the National Academies of Science.

By tilting the sound source so that it is not perpendicular, the researchers created better separation distance and could more efficiently sort cells.

The acoustic tweezers are made by manufacturing an interdigital transducer, which creates the sound, onto the piezoelectric chip surface. Standard photolithography creates microchannels in which the liquid containing the cells flow.

The researchers created the separator, which can run continuously. The device separated 9.9-micrometer particles from 7.3-micrometer particles so efficiently that 97 percent of the 7.3-micrometer particles went to the correct location. The device can also separate cancer cells from white blood cells with high efficiency and purity. It is simple and inexpensive to fabricate and does not need strict alignment to achieve this separation.

"The method we describe in this paper is a step forward in the detection and isolation of circulating tumor cells in the body," said Subra Suresh, one of the study's authors and president of Carnegie Mellon University. "It has the potential to offer a safe and effective new tool for cancer researchers, clinicians and patients."

The researchers see devices like this one separating cancer cells from other cells, bacteria from blood, white blood cells from red blood cells and malaria parasites from blood, to name a few uses.


'/>"/>

Contact: A'ndrea Elyse Messer
aem1@psu.edu
814-865-9481
Penn State
Source:Eurekalert  

Related biology news :

1. How nerve cells flexibly adapt to acoustic signals
2. Passive acoustic monitoring reveals clues to minke whale calling behavior and movements
3. Aspirin intake may stop growth of vestibular schwannomas/acoustic neuromas
4. Elsevier launches new open access journal: Photoacoustics
5. Acoustic monitoring of Atlantic cod reveals clues to spawning behavior
6. Acoustic tweezers capture tiny creatures with ultrasound
7. Optical nano-tweezers take over the control of nano-objects
8. Green photon beams more agile than optical tweezers
9. New optical tweezers trap specimens just a few nanometers across
10. Newly demonstrated capabilities of low-powered nanotweezers may benefit cellular-level studies
11. A single gene separates aggressive and non-aggressive lymphatic system cancer
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Tilted acoustic tweezers separate cells gently
(Date:4/24/2017)... 2017 Janice Kephart , former ... Strategy Partners, LLP (IdSP) , today issues the ... Trump,s March 6, 2017 Executive Order: Protecting ... can be instilled with greater confidence, enabling the ... refugee applications are suspended by until at least ...
(Date:4/18/2017)... 18, 2017  Socionext Inc., a global expert in SoC-based imaging ... server, the M820, which features the company,s hybrid codec technology. A ... Tera Probe, Inc., will be showcased during the upcoming Medtec Japan ... at the Las Vegas Convention Center April ... Click here for ...
(Date:4/13/2017)... , April 13, 2017 UBM,s Advanced Design ... will feature emerging and evolving technology through its ... Summits will run alongside the expo portion of the ... panels and demonstrations focused on trending topics within 3D ... design and manufacturing event will take place June 13-15, 2017 ...
Breaking Biology News(10 mins):
(Date:10/7/2017)... ... October 06, 2017 , ... ... advanced instruments and applications consulting for microscopy and surface analysis, Nanoscience Instruments ... consulting, Nanoscience Analytical offers a broad range of contract analysis services for ...
(Date:10/7/2017)... Mass. , Oct. 6, 2017  The ... work of three scientists, Jacques Dubochet, Joachim ... breakthrough developments in cryo-electron microscopy (cryo-EM) ... technology within the structural biology community. The winners ... Scientists can now routinely produce highly resolved, three-dimensional ...
(Date:10/6/2017)... Washington, D.C. (PRWEB) , ... October 06, 2017 ... ... Cure) will host a lunch discussion and webinar on INSIGhT, the first-ever adaptive ... INSIGhT Principal Investigator, Dana-Farber Cancer Institute. The event is free and open to ...
(Date:10/5/2017)... (PRWEB) , ... October 05, 2017 , ... Understanding the ... newest frontiers in human health. Gut Love: You Are My Future, the newest exhibit ... artist’s perspective as it explores the human condition through the lens of the gut ...
Breaking Biology Technology: