Navigation Links
Think zinc: Molecular sensor could reveal zinc's role in diseases
Date:8/30/2009

Scientists have developed a new molecular sensor that can reveal the amount of zinc in cells, which could tell us more about a number of diseases, including type 2 diabetes. The research, published today in Nature Methods, opens the door to the hidden world of zinc biology by giving scientists an accurate way of measuring the concentration of zinc and its location in cells for the first time.

Zinc is involved in many processes in the body and five percent of all the proteins made by the body's cells are involved in transporting zinc. Scientists believe that zinc plays a role in many diseases; for example, it helps package insulin in pancreas cells and in people with type 2 diabetes, the gene that controls this packaging is often defective.

Previously, researchers used crude chemical techniques to get a rough idea of the concentration of zinc in cells. However, they could not produce an accurate picture of how much zinc was present in cells or where it was within them.

In today's study, researchers from Imperial College London and Eindhoven University of Technology in The Netherlands have developed a molecular sensor using fluorescence proteins that can measure the distance between zinc ions in individual cells, showing how much zinc is present.

Professor Guy Rutter, one of the authors of the study from the Division of Medicine at Imperial College London, said: "There has been relatively little biological work done on zinc compared to other metals such as calcium and sodium, partly because we didn't have the tools to measure it accurately before now. Zinc is so important in the body studies have suggested it has roles in many different areas, including muscles and the brain."

The new sensor, called a fluorescence resonance energy transfer (FRET)-based sensor, is made up of two jellyfish proteins called green fluorescent proteins. The researchers altered the first protein to give off light at a certain wavelength, and altered the second protein to collect that light. When the proteins attached to zinc ions, the proteins became pushed apart and the transmission of light between them became weaker. The researchers used a fluorescence microscope to detect the wavelengths of light emitted by the proteins. This revealed zinc in the cell, with coloured patches visible where the proteins detected zinc.

The researchers used their new sensor to look for zinc in pancreatic cells, where insulin is packaged around zinc ions. Previous research had suggested that in people with type 2 diabetes, the gene that controls the packaging process is often defective, affecting the way insulin is stored. The researchers found a high concentration of zinc ions inside certain parts of the cells where insulin is found. They hope their new sensor could help scientists look more closely at this to find out exactly how zinc is involved in diabetes.

"We can now measure very accurately the concentration of zinc in cells and we can also look at where it is inside the cell, using our molecular measuring device. This sort of information will help us to see what is going on inside different tissues, for example in the brain in Alzheimer's disease, where we also suspect zinc may be involved. We hope this new sensor will help researchers learn more about zinc-related diseases and potentially identify new ways of treating them," added Professor Rutter.

The researchers would now like to develop their new sensor to look at zinc in a living mouse model, so they can observe the movement of zinc in different tissues, for example in diabetes.


'/>"/>

Contact: Lucy Goodchild
lucy.goodchild@imperial.ac.uk
44-207-594-6702
Imperial College London
Source:Eurekalert

Related biology news :

1. MSU discoveries upend traditional thinking about how plants make certain compounds
2. 100 reasons to change the way we think about genetics
3. After a few drinks, older adults more impaired than they think
4. Stress disrupts human thinking, but the brain can bounce back
5. Rethinking the genetic theory of inheritance
6. Diverse landscapes are better: Policymakers urged to think broadly about biofuel crops
7. Diverse landscapes are better: Policymakers urged to think broadly about biofuel crops
8. Carnegie Mellons Philip LeDuc participates in think tank forums
9. Wetlands expert: China should think outside the flooding box with Three Gorges Dam
10. New book rethinks the relationship between sulfur and crops
11. Thinking it through: Scientists call for policy to guide biofuels industry toward sustainability
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/11/2017)... , Jan. 11, 2017  Michael Johnson, co-founder of Visikol Inc. ... Group, Inc., has been named to the elite "Forbes 30 Under ... one of 600 people in 20 fields nationwide to be recognized ... the 15,000 applicants were selected. ... He is currently a PhD candidate at Rutgers University. ...
(Date:1/6/2017)...  Delta ID Inc., a leader in consumer-grade iris ... at CESĀ® 2017. Delta ID has collaborated with Gentex ... use of iris scanning as a secure, reliable and ... a car, and as a way to elevate the ... Delta ID and Gentex will demonstrate (booth #7326 LVCC) ...
(Date:1/3/2017)... 3, 2017 Onitor, provider of digital health ... Track, an innovative biometric data-driven program designed to aid ... at the 2017 Consumer Electronics Show (CES) in ... the U.S., the World Health Organization (WHO), have identified ... adults who are overweight or obese. WHO also states ...
Breaking Biology News(10 mins):
(Date:1/21/2017)... N.J. , Jan. 20, 2017 ... "Company"), a company that provides clinically useful molecular ... it has entered into a securities purchase agreement ... of 855,000 shares of common stock in a ... the Company has agreed to sell to the ...
(Date:1/20/2017)... -- Stock-Callers.com explores the Biotech industry to ... recent performances of select equities. In this morning,s lineup ... Abeona Therapeutics Inc. (NASDAQ: ABEO ), Theravance ... Therapeutics Inc. (NASDAQ: SAGE ). According to ... market size is expected to reach $604.40 billion by 2020 due to ...
(Date:1/19/2017)... 19, 2017  Market Research Future has a half cooked research ... Biopsy is growing rapidly and expected to reach USD 450 Million ... ... Biopsy Market has been assessed as a swiftly growing market and ... in the coming future. There has been a tremendous growth in ...
(Date:1/19/2017)... ... January 19, 2017 , ... November ... to leading biopharmaceutical and medical device manufacturers and regulators, is proud to announce ... Part 11-compliant email client designed to provide product vigilance departments with the flexibility ...
Breaking Biology Technology: