Navigation Links
They are young and need the job: A second chance for dangerous T-cells
Date:6/15/2009

The immune system's T-cells react to foreign protein fragments and therefore are crucial to combating viruses and bacteria. Errant cells that attack the body's own material are in most cases driven to cell death. Some of these autoreactive T-cells, however, undergo a kind of reeducation to become "regulatory T-cells" that keep other autoreactive T-cells under control. A group led by immunologist Professor Ludger Klein of LMU Munich has now shown that the developmental stage of an autoreactive T-cell is decisive to its ultimate destiny. Young autoreactive T-cells are very readily reeducated into regulatory T-cells. Under identical conditions, however, older T-cells become fully activated and can cause damage they are in a way resistant to reeducation. "We now intend to study at the molecular level what makes a T-cell accessible for reeducation," said Klein, "because then it may be possible to convert even normal adult T-cells, which can be obtained easily and in great numbers from blood. Possibly, they could then be used as regulatory T-cells in therapies for autoimmune diseases such as type-1 diabetes or multiple sclerosis: these are diseases that are triggered by uncontrolled autoreactive T-cells." (PNAS, 10 June 2009)

During their development in the thymus gland, a kind of 'T-cell school', every T-cell is fitted out with its own personal receptor. The diversity of these receptors allows the immune system to respond to nearly all pathogens. Since T-cell receptors are all randomly constructed, there is also a constant production of T-cells in the thymus that may recognize and attack the body's own structures. "Most of these dangerous autoreactive T-cells, though, are sorted out in a screening process before they leave the thymus," Klein reported. "This negative selection, that is the elimination of autoreactive T-cells that would otherwise attack their own organism, is an important requirement for immune tolerance."

But not all autoreactive T-cells are driven to cell death. Some of them are 'reeducated' into so-called regulatory T-cells. While these still possess a T-cell receptor that targets the body's own structures, they have been reprogrammed during their development in the thymus so that they can no longer cause any damage. In fact, it is "quite the opposite," as Klein explained. "They even keep other nearby errant T -cells under control. This is why the mechanisms for the creation of regulatory T-cells are of enormous practical interest. Deciphering these processes could lead to new therapeutic approaches for autoimmune diseases such as multiple sclerosis, rheumatic arthritis and type-1 diabetes, which are triggered by autoreactive T-cells."

Klein and his colleagues are working on a study into unexplained aspects of regulatory T-cells: How can negative selection, i.e. induced cell death, and reprogramming into regulatory T-cells both take place in the thymus gland, right alongside each other? Why does apparently the same trigger drive some cells to 'suicide' while bringing on a 'reeducation process' in others? "One largely popular hypothesis among immunologists in answer to these questions is based on the fact that T-cells can only recognize their target structures if they have them presented to them by other immune cells," said Klein. "Since there are various subspecies of these antigen-presenting cells in the thymus, we tested whether some of them are possibly specialized in controlling one or the other T-cell destinies with a negative result."

Instead, it turned out that the developmental stage the 'age' as it were of the T-cells is crucial. This was even observable in vitro: Young T-cells are very readily reeducated into regulatory T-cells, while older T-cells are largely 'resistant to reeducation' under identical conditions. "It is important for us to understand this 'educability' at a molecular level," Klein said, "because then we might be able to manipulate adult, non-autoreactive T-cells to our needs, since they can be obtained in the millions from the blood of patients. Young T-cells, on the other hand, only exist in the thymus. We will now investigate whether there is a specific time window in the life of a young T-cell that allows negative selection or reprogramming into regulatory T-cells. We are also trying to decode the molecular switch inside T-cells that controls this cell-autonomous switching as a response to external signals."


'/>"/>

Contact: Dr. Ludger Klein
ludger.klein@med.uni-muenchen.de
49-089-218-075-696
Ludwig-Maximilians-Universitt Mnchen
Source:Eurekalert

Related biology news :

1. Promising device snags young inventors coveted spot at IShow
2. Five outstanding young gastroenterologists receive AGA Foundation 2009 Research Scholars Award
3. System that regulates blood pressure is amiss in some healthy, young blacks
4. 6 young ASU faculty earn NSF Career awards
5. ONR announces 2009 Young Investigator Award recipients
6. Oral contraceptives impair muscle gains in young women
7. Computational model examines the pathways of Alzheimers that strikes at the young
8. Oral contraceptives impair muscle gains in young women
9. Computational model examines the pathways of Alzheimers that strikes at the young
10. Heinz Maier-Leibnitz Prizes 2009: Six young researchers recognized for outstanding achievements
11. Young dinosaurs roamed together, died together
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/17/2017)... NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" or the ... Annual Report on Form 10-K on Thursday April 13, 2017 with ... ... Relations section of the Company,s website at http://www.nxt-id.com  under "SEC ... . 2016 Year Highlights: Acquisition ...
(Date:4/11/2017)... April 11, 2017 No two people ... at the New York University Tandon School of ... have found that partial similarities between prints are ... in mobile phones and other electronic devices can ... The vulnerability lies in the fact that fingerprint-based ...
(Date:4/5/2017)... , April 4, 2017 KEY FINDINGS ... to expand at a CAGR of 25.76% during the ... is the primary factor for the growth of the ... https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global stem ... technology, application, and geography. The stem cell market of ...
Breaking Biology News(10 mins):
(Date:5/21/2017)... ... May 19, 2017 , ... Ovation ... of the American Association of Bioanalysts (AAB) and the College of Reproductive Biology ... conference reinforces AAB’s commitment to excellence in clinical laboratory services and regulations. ...
(Date:5/19/2017)... ... , ... In response to the strong base of evidence supporting the use ... release of their Gait Trainer 3 with an Integrated Music Therapy option. This is ... in rehabilitating individuals with cerebral palsy, traumatic brain injury, stroke and Parkinson’s disease. ...
(Date:5/18/2017)... Malden, Mass. (PRWEB) , ... May 18, 2017 ... ... completed the procedure on April 28, 2017 at the Prince Of Wales Private ... degenerative cervical disc at level C6-C7. The patient failed conservative treatments prior to ...
(Date:5/18/2017)... ... May 16, 2017 , ... Clinical Supplies Management (“CSM”), ... as the company continues to grow. CSM has doubled in size over the ... executing an aggressive growth strategy. , Roger Gasper joins CSM as Chief Financial Officer. ...
Breaking Biology Technology: