Navigation Links
Therapeutic nanoparticles give new meaning to sugar-coating medicine
Date:9/22/2009

A research team at the National Institute of Standards and Technology (NIST) studying sugar-coated nanoparticles for use as a possible cancer therapy has uncovered a delicate balancing act that makes the particles more effective than conventional thinking says they should be. Just like individuals in a crowd respecting other people's personal space, the particles work because they get close together, but not too close.

In cooperation with colleagues at The Johns Hopkins University, Dartmouth College, the University of Manitoba and two biopharmaceutical companies, the NIST team has demonstrated* that the particlesessentially sugar-coated bits of iron oxide, about 100 nanometers wideare potent cancer killers because they interact with one another in ways that smaller nanoparticles do not. The interactions, thought by many bioengineers to be undesirable, actually help the larger particles heat up better when subjected to an alternating magnetic field. Because this heat destroys cancer cells, the team's findings may help engineers design better particles and treatment methods.

Nanoparticles hold the promise of battling cancer without the damaging side effects of chemotherapy or radiation treatment. Minuscule balls of iron oxide can be coated with sugar molecules making them particularly attractive to resource-hungry cancer cells. Once the particles are injected, cancer cells would then ingest them, and doctors would then be able to apply an alternating magnetic field that causes the iron oxide centers to heat, killing the cancer but leaving surrounding tissue unharmed.

Two biotech companies, Micromod Partikeltechnologie and Aduro BioTech, created particles that showed great potential in treating cancers in mice, and they asked NIST to help understand why it worked so well. "But they sent us particles that were much larger than what the conventional wisdom says they should be," says NIST materials scientist Cindi Dennis. "Larger particles are more strongly magnetic and tend to clump together, which makes them large enough to attract the body's defense systems before they can reach a tumor. The companies' nanoparticles, however, did not have this problem."

Neutron scattering probes at the NIST Center for Neutron Research revealed that the particles' larger iron oxide cores attract one another, but that the sugar coating has fibers extending out, making it resemble a dandelionand these fibers push against one another when two particles get too close together, making them spring apart and maintain an antibody-defying distance rather than clumping. Moreover, when the particles do get close, the iron oxide centers all rotate together under the influence of a magnetic field, both generating more heat and depositing this heat locally. All these factors helped the nanoparticles destroy breast tumors in three out of four mice after one treatment with no regrowth.

"The push-pull is part of a tug of war that fixes the distance between nanoparticles," Dennis says. "This suggests we can stabilize interacting particles in ways that potentially pay off in the clinic."


'/>"/>

Contact: Chad Boutin
boutin@nist.gov
301-975-4261
National Institute of Standards and Technology (NIST)
Source:Eurekalert

Related biology news :

1. Natural compounds, chemotherapeutic drugs may become partners in cancer therapy
2. Finding the ZIP-code for gene therapy: Scientists imitate viruses to deliver therapeutic genes
3. Neurimmune Therapeutics Announces Advancement of Alzheimers Program into Preclinical Development
4. New DNA and RNA aptamers offer unique therapeutic advantages
5. Got zinc? New zinc research suggests novel therapeutic targets
6. Stem cell research: From molecular physiology to therapeutic applications
7. Triggering muscle development -- a therapeutic cure for muscle wastage?
8. New nanoparticles could revolutionize therapeutic drug discovery
9. Amarna Therapeutics B.V. and TNO announce SVac research and development partnership
10. Continuous glucose monitoring technology -- special issue of Diabetes Technology and Therapeutics
11. NIH announces new program to develop therapeutics for rare and neglected diseases
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/11/2018)... ... 10, 2018 , ... For the first time, an app ... about their treatment options. The unique patient education tool seeks to improve survival ... was developed through a collaboration between the Centers for Disease Control and ...
(Date:10/5/2018)... Utah and BOSTON (PRWEB) , ... October 04, ... ... in delivering cloud-based enterprise-class unified communications and collaboration solutions, was present at Microsoft ... support of Office 365 communication solutions. , Microsoft issued a statement about the ...
(Date:10/3/2018)... ... 03, 2018 , ... Fit4D, a leading diabetes management technology-enabled ... Jimmy Lee, as Strategic Advisor to the company’s board. Mr. Lee is a ... a Senior Executive at Anthem, he had P&L accountability for $35 billion of ...
Breaking Biology News(10 mins):
(Date:9/27/2018)... ... September 26, 2018 , ... NDA Partners Chairman ... senior quality, regulatory, and in vitro diagnostic device expert with more than 28 ... joined the firm as an Expert Consultant. Her experience includes leadership roles in ...
(Date:9/27/2018)... BUDAPEST, Hungary and CAMBRIDGE, Mass. (PRWEB) , ... ... ... headquartered in Budapest with US offices in Cambridge, MA, announce today that Holotype ... customers or collaborators at the annual meeting of the American Society for Histocompatibility ...
(Date:9/15/2018)... ... ... Next-generation genomic sequencing is transforming what is known about pediatric cancer and ... the sheer size of genomics data has made sharing across the global scientific community ... advance cures by reducing the technological barriers to data sharing and analysis. Developed by ...
(Date:9/12/2018)... ... September 11, 2018 , ... Sterlitech Corporation, a global leader ... membranes from Fluid Technology Solutions (FTS H2O) to their offering of filtration products. ... cellulose triacetate (CTA) material. The highly hydrophilic nature of the CTA FO membranes ...
Breaking Biology Technology: