Navigation Links
The zebrafish's neural circuit prevents it from biting off more than it can chew
Date:11/1/2010

Between alerting us to danger and allowing us to spot prey, vision keeps many animals, including humans, alive. But exactly how does this important sense work, and why is it easier for us to spot movement of small objects in our field of vision, than to notice other things? The complexity of the neural network that supports vision has long baffled scientists.

Now, with a new technology and support from the National Science Foundation, Claire Wyart in Ehud Isacoff's lab at the University of California at Berkeley and Filo Del Bene at Herwig Baier's lab at the University of California at San Francisco have been able to follow entire populations of retinal and brain cells in their test animal: the zebrafish larva, and solve some of the mysteries of its neural circuit that underlies its vision.

The research team's findings were published in the October 29 issue of Science.

Using a newly developed genetically encoded fluorescent reporter of neural activity developed by Loren Looger at the Howard Hughes Medical Institute's Janelia Farm Research Campus, Wyart and Del Bene have been able to follow how large and small visual cues translate into electrical activity in a region of the zebrafish's brain.

The brain region of the zebrafish that receives input from the retina, called the optic tectum, is separated into layers. The top layer receives direct connections from retinal cells, and has a population of both excitatory and inhibitory neurons. These neurons connect to output neurons that project to other brain regions that control how the zebrafish chases prey.

Isacoff, Baier, Wyart and Del Bene have revealed that a large visual stimulus covering the entire field of vision (such as large floating debris, or another zebrafish) results in low output neuron activity. However small (prey-sized) items moving across the zebrafish's field of vision at a prey-like speed activate the output neurons very well. The basis of this "filtering" of information is that large visual stimuli massively activate the inhibitory cell population and inhibit the output cells, while small moving objects activate only a small number the inhibitory tectal cells, enabling the excitation to drive the output cells efficiently.

This mechanism gives the zebrafish good hunting responses to appropriate visual cues, and thereby helps keep it from biting off more than it can chew.

Isacoff and Baier demonstrated that the inhibition of neural activity by large visual stimuli is essential for hunting prey--as evidenced by the fact that prey capture was disrupted when the inhibitory cells were removed or prevented from emitting neurotransmitters.


'/>"/>

Contact: Lily Whiteman
lwhitema@nsf.gov
703-292-8310
National Science Foundation
Source:Eurekalert  

Related biology news :

1. Neural stem cells attack glioblastoma cells
2. Searching for causes of neural disconnection in schizophrenia
3. Neural tissue contains imbalanced levels of proteins, U-M study finds
4. Induced neural stem cells: Not quite ready for prime time
5. Brain-controlled cursor doubles as a neural workout
6. Case Western Reserve University discovers Merkel cell originates from skin, not the neural crest
7. Mouse brain rewires its neural circuits to recuperate from damaged neural function after stroke
8. Essential nutrient found in eggs may help lower risk of neural tube defects
9. Neural stem cell differentiation factor discovered
10. Identification of a key molecular pathway required for brain neural circuit formation
11. Early brain activity sheds new light on the neural basis of reading
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
The zebrafish's neural circuit prevents it from biting off more than it can chew
(Date:5/24/2016)... Ampronix facilitates superior patient care by providing unparalleled technology to leaders of ... the latest premium product recently added to the range of products distributed by Ampronix. ... ... ... Medical Display- Ampronix News ...
(Date:5/3/2016)...  Neurotechnology, a provider of high-precision biometric identification ... Identification System (ABIS) , a complete system for ... can process multiple complex biometric transactions with high ... face or iris biometrics. It leverages the core ... MegaMatcher Accelerator , which have been used in ...
(Date:4/19/2016)... UAE, April 20, 2016 The ... as a compact web-based "all-in-one" system solution for all ... fingerprint reader or the door interface with integration authorization ... access control systems. The minimal dimensions of the access ... into the building installations offer considerable freedom of design ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... June 23, 2016   Boston Biomedical , ... compounds designed to target cancer stemness pathways, announced ... granted Orphan Drug Designation from the U.S. Food ... gastric cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin ... to inhibit cancer stemness pathways by targeting STAT3, ...
(Date:6/23/2016)... -- A person commits a crime, and the detective uses ... criminal down. An outbreak of foodborne illness makes ... uses DNA evidence to track down the bacteria that caused ... not. The FDA has increasingly used a complex, cutting-edge technology ... Put as simply as possible, whole genome sequencing is a ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... and Mold) microbial test has received AOAC Research Institute approval 061601. , “This ... introduced last year,” stated Bob Salter, Vice President of Regulatory and Industrial Affairs. ...
(Date:6/23/2016)...  The Biodesign Challenge (BDC), a university competition that ... living systems and biotechnology, announced its winning teams at ... New York City . The teams, ... at MoMA,s Celeste Bartos Theater during the daylong summit. ... curator of architecture and design, and Suzanne Lee ...
Breaking Biology Technology: