Navigation Links
The zebrafish's neural circuit prevents it from biting off more than it can chew
Date:11/1/2010

Between alerting us to danger and allowing us to spot prey, vision keeps many animals, including humans, alive. But exactly how does this important sense work, and why is it easier for us to spot movement of small objects in our field of vision, than to notice other things? The complexity of the neural network that supports vision has long baffled scientists.

Now, with a new technology and support from the National Science Foundation, Claire Wyart in Ehud Isacoff's lab at the University of California at Berkeley and Filo Del Bene at Herwig Baier's lab at the University of California at San Francisco have been able to follow entire populations of retinal and brain cells in their test animal: the zebrafish larva, and solve some of the mysteries of its neural circuit that underlies its vision.

The research team's findings were published in the October 29 issue of Science.

Using a newly developed genetically encoded fluorescent reporter of neural activity developed by Loren Looger at the Howard Hughes Medical Institute's Janelia Farm Research Campus, Wyart and Del Bene have been able to follow how large and small visual cues translate into electrical activity in a region of the zebrafish's brain.

The brain region of the zebrafish that receives input from the retina, called the optic tectum, is separated into layers. The top layer receives direct connections from retinal cells, and has a population of both excitatory and inhibitory neurons. These neurons connect to output neurons that project to other brain regions that control how the zebrafish chases prey.

Isacoff, Baier, Wyart and Del Bene have revealed that a large visual stimulus covering the entire field of vision (such as large floating debris, or another zebrafish) results in low output neuron activity. However small (prey-sized) items moving across the zebrafish's field of vision at a prey-like speed activate the output neurons very well. The basis of this "filtering" of information is that large visual stimuli massively activate the inhibitory cell population and inhibit the output cells, while small moving objects activate only a small number the inhibitory tectal cells, enabling the excitation to drive the output cells efficiently.

This mechanism gives the zebrafish good hunting responses to appropriate visual cues, and thereby helps keep it from biting off more than it can chew.

Isacoff and Baier demonstrated that the inhibition of neural activity by large visual stimuli is essential for hunting prey--as evidenced by the fact that prey capture was disrupted when the inhibitory cells were removed or prevented from emitting neurotransmitters.


'/>"/>

Contact: Lily Whiteman
lwhitema@nsf.gov
703-292-8310
National Science Foundation
Source:Eurekalert  

Related biology news :

1. Neural stem cells attack glioblastoma cells
2. Searching for causes of neural disconnection in schizophrenia
3. Neural tissue contains imbalanced levels of proteins, U-M study finds
4. Induced neural stem cells: Not quite ready for prime time
5. Brain-controlled cursor doubles as a neural workout
6. Case Western Reserve University discovers Merkel cell originates from skin, not the neural crest
7. Mouse brain rewires its neural circuits to recuperate from damaged neural function after stroke
8. Essential nutrient found in eggs may help lower risk of neural tube defects
9. Neural stem cell differentiation factor discovered
10. Identification of a key molecular pathway required for brain neural circuit formation
11. Early brain activity sheds new light on the neural basis of reading
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
The zebrafish's neural circuit prevents it from biting off more than it can chew
(Date:3/13/2017)... 2017 Future of security: Biometric Face Matching software  ... ... DERMALOGs Face Matching enables to match face pictures against each other or ... individuals. (PRNewsFoto/Dermalog Identification Systems) ... "Face Matching" is the fastest software for biometric Face Matching on the market. ...
(Date:3/7/2017)... 2017   HireVue , the leading provider of ... the best talent, faster, today announced the additions of ... and Diana Kucer as Chief Marketing Officer ... team poised to drive continued growth in the company,s ... of record bookings in 2017. "Companies worldwide ...
(Date:3/2/2017)... 2, 2017 Who risk to be deprived ... the full report: https://www.reportbuyer.com/product/4313699/ WILL APPLE ... FIELD? Fingerprint sensors using capacitive technology represent a ... vendor Idex forecasts an increase of 360% of the ... of the fingerprint sensor market between 2014 and 2017 ...
Breaking Biology News(10 mins):
(Date:3/24/2017)... March 24, 2017   Sienna Biopharmaceuticals, Inc. , ... today announced that Richard Peterson will join ... Peterson, who brings more than two decades ... , who is retiring at the end of April ... capacity. Peterson joins Sienna from Novan, Inc., where he ...
(Date:3/23/2017)... , March 23, 2017  Northwest Biotherapeutics ... DCVax® personalized immune therapies for solid tumor cancers, ... $7.5 million financing it announced last Friday, March ... to several institutional investors securities totaling 28,843,692 shares, ... share, and 10,000,000 shares of Class C Warrants ...
(Date:3/23/2017)... , March 23, 2017 Kineta, ... development of novel therapies in immuno-oncology, today announced ... lead" small molecule compounds that activate interferon response ... pathways and demonstrate immune-mediated tumor regression in a ... the study who demonstrated complete tumor regression to ...
(Date:3/23/2017)... , ... March 23, 2017 , ... ... solutions, today announced the hire of Dr. Sigmund “Sig” Floyd as Vice President ... strategic partnerships and joint development activities. , “Dr. Floyd’s career has spanned 30 ...
Breaking Biology Technology: