Navigation Links
The top 5 ways medical physics has changed health care

College Park, MD (February 28, 2008) -- Many of the greatest inventions in modern medicine were developed by physicists who imported technologies such as X rays, nuclear magnetic resonance, ultrasound, particle accelerators and radioisotope tagging and detection techniques into the medical domain. There they became magnetic resonance imaging (MRI), computerized tomography (CT) scanning, nuclear medicine, positron emission tomography (PET) scanning, and various radiotherapy treatment methods. These contributions have revolutionized medical techniques for imaging the human body and treating disease.

Now, in 2008, the American Association of Physicists in Medicine (AAPM), the premier scientific and professional association of medical physicists, is celebrating its 50th anniversary and is calling attention to the field of medical physics achievements

"There are a number of ways in which medical physicists contribute to medicine," says AAPM President Gerald A. White Jr. "Some develop cutting-edge technologies in the physics laboratory, while others are board-certified health professionals who apply these technologies in the clinic and help diagnose illness and alleviate suffering for millions of people a year in the United States."

As a practicing medical physicist himself, White contributes to patient care at his practice at Colorado Associates in Medical Physics in Colorado Springs.

"Virtually all hospitals in the country today have medical physicists on staff to help administer radiation therapy treatment and to insure quality in both radiation treatment and imaging techniques," says long-time AAPM member Jean M. St. Germain, who is the Acting Chair of the Department of Medical Physics at Memorial Sloan-Kettering Cancer Center in New York.

In the coming year, the AAPM will be calling attention to the many ways in which medical physics has revolutionized medicine. A few highlights include:


In the last 50 years, medical physicists have spearheaded the development and application of particle accelerators for cancer treatment. Once confined only to physics laboratories, linear accelerators are sophisticated high energy machines that can now deliver beams of energetic electrons or X rays to malignant tumors -- at doses capable of killing cancerous cells and stopping the tumor's growth.

In recent years, an advanced treatment technique called intensity-modulated radiation therapy (IMRT) has enhanced the ability of radiation to control tumors. IMRT uses computer programs to precisely shape the treatment field and control the accelerator beam in order to deliver a maximal dose of radiation to a tumor while minimizing the doses to surrounding healthy tissues. IMRT is already in use for treating prostate cancer, cancers of the brain, head and neck and other malignant diseases, in children and in adults.


Techniques for breast imaging have undergone substantial advances since the introduction of the original film techniques. The early emulsion films were replaced with more sensitive film stocks and finally with digital imaging. As each of these newer techniques was introduced, doses to the patient were reduced and the sensitivity of the techniques for finding early and treatable disease increased. Computer-aided diagnosis and the use of MRI and CT for breast imaging promises to further advance cancer detection and treatment in the 21st century. MRI breast imaging is proving particularly useful at finding growths in younger women and at earlier stages.


Another rapidly growing technique used to detect diseases in people of all ages is positron emission tomography (PET). This technique uses short-lived radionuclides produced in cyclotrons. These nuclides are labeled to compounds such as glucose, testosterone and amino acids to monitor physiological factors including blood flow and glucose metabolism. These images can be crucial in detecting seizures, coronary heart disease and ischemia. In cancer care PET imaging is used to detect tumors and monitor the success of treatment courses as well as detecting early recurrent disease.

The actual imaging technique sounds like a science fiction movie -- it involves matter and antimatter annihilating one another. The short-lived radionuclides decay and emit particles known as positrons -- the antimatter equivalent to electrons. These positrons rapidly encounter electrons, collide, annihilate, and produce a pair of photons which move in opposite directions. These photons can be captured in special crystals and the images produced by computer techniques.

Other techniques, such as radioimmunoassay, use the decay of radioactive materials to study a variety of physiological conditions by imaging or chemical methods.


With the intent to promote the best medical imaging practices nationwide and help ensure the health and safety of the millions of people who undergo CT scanning each year in the United States, the AAPM issued a CT radiation dose management report in 2008, recommending standardized ways of reporting doses and educating users on the latest dose reduction technology. The report is available on the AAPM website at: An associated news release can be accessed at


Some of the greatest medical advances in the history of medicine occurred in the past century and came from the minds and laboratories of physicists including:

  • X rays
    Discovered by Wilhelm Conrad Roentgen in 1895, the application of these rays to medical imaging was recognized and embraced immediately. When the Nobel Prizes were established at the turn of the century in 1901, Roentgen won the first prize (in physics) for his discovery of X rays.

  • Magnetic Resonance
    Though Felix Bloch and Edward M. Purcell shared the Nobel Prize in Physics in 1952, just a few years after discovering the phenomenon of magnetic resonance, it took a few more decades before their discovery led to the development of MRI, which is routinely used today to image the human body. In 2003, the Nobel Prize in Physiology or Medicine was awarded to Paul Lauterbur and Peter Mansfield for their work in MRI.

  • Radioimmunoassays
    In 1977, the Nobel Prize in Physiology or Medicine was awarded to AAPM member Rosalyn Yalow for her the development of radioimmunoassays, an extremely sensitive diagnostic technique that can quantify tiny amounts of biological substances in the body using radioactively-labeled materials.

  • Computer-assisted tomography
    In 1979, Allan M Cormack and Godfrey Newbold Hounsfield won the Nobel Prize in Physiology or Medicine for developing CT, which has revolutionized imaging because CT provides images with unprecedented clarity.


This year, the AAPM journal, Medical Physics, will celebrate the 50th anniversary with a year-long celebration. Every issue published in 2008 will have an article devoted to history and reviews of special topics intended to recognize this anniversary, and will carry the AAPM anniversary logo.


Contact: Jason Socrates Bardi
American Institute of Physics

Related biology news :

1. Analysis calls for medical device information to better serve patients and doctors
2. 2 federal public health grants awarded to Weill Cornell Medical College
3. Stanford researchers publish review of US medical device regulation
4. Radioactive understudy may aid medical imaging, drug development
5. U. Mass Medical School and Carnegie announce licensing agreements with Oxford BioMedica
6. Medical breakthrough for organ transplants and cardiovascular diseases by Flemish researchers
7. UVa biomedical engineering study shows magnetic field can reduce swelling
8. New report finds great potential for Swedish medical technology
9. Titanium Group Signs Letter of Intent to Acquire Multimilion Dollar Medical Software Company and Its Existing Sales Network
10. Titanium Group Signs Letter of Intent to Acquire Multimilion Dollar Medical Software Company and Its Existing Sales Network
11. Triage study challenges notions of emergency medical response to disaster
Post Your Comments:
(Date:10/29/2015)... , Oct. 29, 2015   MedNet Solutions ... the entire spectrum of clinical research, is pleased to ... High Tech Association (MHTA) as one of only three ... the "Software – Small and Growing" category. The Tekne Awards ... who have shown superior technology innovation and leadership. ...
(Date:10/29/2015)... health pioneer, Joseph C. Kvedar , MD, describes ... wellness, and the business opportunities that arise from it ... Healthy Things . Long before health and wellness ... vice president, Connected Health, Partners HealthCare, was creating a ... the hospital or doctor,s office into the day-to-day lives ...
(Date:10/27/2015)... October 27, 2015 Munich, ... Gaze Mapping technology (ASGM) automatically maps data from mobile ... Glasses , so that they can be quantitatively ... Munich, Germany , October 28-29, 2015. ... data from mobile eye tracking videos created with ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... 2015 , ... Copper is an essential micronutrient that all ... copper is also toxic to cells. With a $1.3 million award from the ... a systematic study of copper in the bacteria Pseudomonas aeruginosa (P. aeruginosa), a ...
(Date:11/24/2015)... , November 24, 2015 ... new market research report "Oligonucleotide Synthesis Market by Product ... (PCR, Gene Synthesis, Diagnostic, DNA, RNAi), End-User (Research, Pharmaceutical ... published by MarketsandMarkets, the market is expected to reach ... in 2015, at a CAGR of 10.1% during the ...
(Date:11/24/2015)... , November 24, 2015 ... market research report released by Transparency Market Research, the ... at a CAGR of 17.5% during the period between ... Market - Global Industry Analysis, Size, Volume, Share, Growth, ... non-invasive prenatal testing market to reach a valuation of ...
(Date:11/24/2015)... ... 24, 2015 , ... In harsh industrial processes, the safety ... sensors can represent a weak spot where leaking process media is a possible ... housings , which are designed to tolerate extreme process conditions. They combine rugged ...
Breaking Biology Technology: