Navigation Links
The sweetest calculator in the world

Jena (Germany) In a chemistry lab at the Friedrich Schiller University Jena (Germany): Prof. Dr. Alexander Schiller works at a rectangular plastic board with 384 small wells. The chemist carefully pipets some drops of sugar solution into a row of the tiny reaction vessels. As soon as the fluid has mixed with the contents of the vessels, fluorescence starts in some of the wells. What the Junior Professor for Photonic Materials does here with his own hands could also be called in a very simplified way, the 'sweetest computer in the world'. The reason: the sugar molecules Schiller uses are part of a chemical sequence for information processing.

The chemist of Jena University and his two postgraduate students, Martin Elstner and Jrg Axthelm recently described in the new edition of the science journal 'Angewandte Chemie International Edition' how they developed a molecular computer on the basis of sugar (DOI: 10.1002/anie.201403769). "The binary logic which makes a conventional computer chip work is based on simple yes/no-decisions," Professor Schiller explains. "There is either electricity flowing between both poles of an electric conductor or there isn't." These potential differences are being coded as "0" and "1" and can be linked via logic gates the Boolean operators like AND, OR, NOT. In this way, a number of different starting signals and complex circuits are possible.

These logic links however can also be realized with the help of chemical substances, as the Jena chemists were able to show. For their 'sugar computer' they use several components: One fluorescent dye and a so-called fluorescence quencher. "If there are both components involved, the colorant can't display its impact and we don't see a fluorescence signal," Schiller says. But if sugar molecules are involved, the fluorescence quencher reacts with the sugar and thus loses its capability to suppress the fluorescence signal, which makes the dye fluorescent. Depending on whether the dye, the fluorescence quencher and the sugar are on hand to give the signal, a fluorescent signal results "1" or no signal "0".

"We link chemical reactions with computer algorithms in our system in order to process complex information," Martin Elstner explains. "If a fluorescence signal is registered, the algorithm determines what goes into the reaction vessel next." In this way signals are not translated and processed in a current flow, like in a computer but in a flow of matter.

That their chemical processing platform works, Schiller and his staff demonstrated in the current study with the sample calculation 10 + 15. "It took our sugar computer about 40 minutes, but the result was correct," Prof. Schiller says smiling, and clarifies: "It is not our aim to develop a chemical competition to established computer chips." The chemist rather sees the field of application in medical diagnostics. So it is for instance conceivable to connect the chemical analysis of several parameters of blood and urine samples via the molecular logic platform for a final diagnosis and thus enable decisions for therapies.

Contact: Ute Schoenfelder
Friedrich-Schiller-Universitaet Jena

Related biology news :

1. A calculator to estimate the likelihood of antidepressant response
2. Super bananas -- world first human trial
3. Autism Speaks to sequence worlds largest collection of autism genomes
4. Toxic computer waste in the developing world
5. UK invests in worlds most advanced crystallography facility
6. Harvesting sunlight to help feed and fuel the world
7. New tools help protect worlds threatened species
8. Panama saves whales and protects world trade
9. 3,000 rice genome sequences made publicly available on World Hunger Day
10. Engineers build worlds smallest, fastest nanomotor
11. Goldschmidt -- the worlds biggest Geochemistry conference, Sacramento (CA), 8-13 June
Post Your Comments:
Related Image:
The sweetest calculator in the world
(Date:4/26/2016)... LONDON , April 26, 2016 ... a product subsidiary of Infosys (NYSE: ... to integrate the Onegini mobile security platform with ... ) The integration will ... to access and transact across channels. Using this ...
(Date:4/19/2016)... , UAE, April 20, 2016 ... implemented as a compact web-based "all-in-one" system solution for ... biometric fingerprint reader or the door interface with integration ... modern access control systems. The minimal dimensions of the ... readers into the building installations offer considerable freedom of ...
(Date:4/15/2016)... , April 15, 2016 ... "Global Gait Biometrics Market 2016-2020,"  report to their ... ) , ,The global gait biometrics market ... 13.98% during the period 2016-2020. Gait ... which can be used to compute factors that ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... 2016 Epic Sciences unveiled a liquid ... to PARP inhibitors by targeting homologous recombination deficiency ... new test has already been incorporated into numerous ... types. Over 230 clinical trials are ... including PARP, ATM, ATR, DNA-PK and WEE-1. Drugs ...
(Date:6/23/2016)...   Boston Biomedical , an industry leader ... target cancer stemness pathways, announced that its lead ... Designation from the U.S. Food and Drug Administration ... gastroesophageal junction (GEJ) cancer. Napabucasin is an orally ... stemness pathways by targeting STAT3, and is currently ...
(Date:6/23/2016)... Prostate Cancer Foundation (PCF) is pleased to announce 24 new Young Investigator ... Members of the Class of 2016 were selected from a pool of 128 ... About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... , ... June 23, 2016 , ... In a new ... in Denmark detail how a patient who developed lymphedema after being treated for breast ... results could change the paradigm for dealing with this debilitating, frequent side effect of ...
Breaking Biology Technology: