Navigation Links
The skeleton: Size matters
Date:10/27/2009

Vertebrates have in common a skeleton made of segments, the vertebrae. During development of the embryo, each segment is added in a time dependent manner, from the head-end to the tail-end: the first segments to be added become the vertebrae of the neck, later segments become the vertebrae with ribs and the last ones the vertebra located in the tail (in the case of a mouse, for example). In this process, it is crucial that, on the one hand, each segment, as it matures, becomes the correct type of vertebra and, on the other, that the number of vertebrae in the skeleton, and therefore the size of the spine, are minutely controlled.

It has long been known that the identity of each vertebra is due to the activation of a class of genes called Hox. Now, in the latest issue of Developmental Cell (*) researchers from the Instituto Gulbenkian de Cincia, in Portugal, the Institute KNAW and University Medical Centre (The Netherlands) show that besides determining the identity of the vertebrae, Hox genes also have a say in how many are going to be formed at all.

There is a huge diversity in number of vertebrae in animals: some have many vertebrae, and are thus longer, like a snake, and others have fewer vertebrae and are shorter, like mice. Vertebrae are made from precursors known as somites, formed in the embryos, sequentially from head to tail. This process is directly linked to growth of the embryo at its tail end: the more it grows, the more somites it makes and, as a result the more vertebrae the adult animal has. Of the many genes involved in this growth, a family of genes called Cdx are known to play a central role.

According to Moises Mallo, group leader at the IGC and one of the lead authors on the paper, 'We knew that some Hox genes are not activated when the Cdx genes are turned off, but this was always considered to be part of a mechanism to ensure that each new somite generates the appropriate type of vertebra. We now show that the activation of Hox genes is also part of how Cdx genes promote growth of the embryo at its tail end: when the relevant Hox genes were activated in the Cdx mouse mutants the embryos recovered and were born with a quite normal vertebral column, proving that the Hox genes were able to compensate for the lack of Cdx. This is a novel role for Hox genes'.

The researchers also show that some Hox genes are important to stop the addition of extra segments, at later stages in development. Indeed, if Hox genes that are usually active later on in development, in the last forming segments, are turned on before their time, in mouse embryos, they interrupt addition of new segments and lead to a tail truncation in the vertebral column.

As Mallo puts it, 'This paper provides and important addition to a long-standing view on the role of the Hox genes one of the most-studied genes involved in embryonic development: that it controls not only identity, but also number of vertebrae. Although these observations were made in the tail-end region of the embryo, it is very likely that similar mechanisms might be acting to determine the number of segments closer to the head".


'/>"/>

Contact: Silvia Castro
sacastro@igc.gulbenkian.pt
351-214-464-537
Instituto Gulbenkian de Ciencia
Source:Eurekalert

Related biology news :

1. Shape matters in the case of cobalt nanoparticles
2. Penn biologists demonstrate that size matters... in snail shells
3. Sequence matters in droughts and floods
4. In spiders, size matters: Small males are more often meals
5. How size matters
6. Primate sperm competition: speed matters
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... Allen Institute for Cell Science today announces the launch ... dynamic digital window into the human cell. The website ... deep learning to create predictive models of cell organization, ... suite of powerful tools. The Allen Cell Explorer will ... resources created and shared by the Allen Institute for ...
(Date:4/4/2017)...   EyeLock LLC , a leader of iris-based ... Patent and Trademark Office (USPTO) has issued U.S. Patent ... an iris image with a face image acquired in ... 45 th issued patent. "The ... the multi-modal biometric capabilities that have recently come to ...
(Date:3/30/2017)... HONG KONG , March 30, 2017 ... developed a system for three-dimensional (3D) fingerprint identification by adopting ground ... technology into a new realm of speed and accuracy for use ... applications at an affordable cost. ... ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... ... of a complex biological network, a depiction of a system of linkages and ... Dmitry Korkin, PhD, associate professor of computer science at Worcester Polytechnic Institute (WPI) ...
(Date:10/12/2017)... , ... October 12, 2017 , ... ... Vilnius, Lithuania, announced today that they have entered into a multiyear collaboration to ... provide CRISPR researchers with additional tools for gene editing across all applications. , ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... with the addition of its newest module, US Hemostats & Sealants. , SmartTRAK’s ... hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants used in surgical ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... analysis platform specifically designed for life science researchers to analyze and interpret ... Rosalind Franklin, who made a major contribution to the discovery of the ...
Breaking Biology Technology: