Navigation Links
The shape of things to come: NIST probes the promise of nanomanufacturing using DNA origami
Date:3/7/2012

In recent years, scientists have begun to harness DNA's powerful molecular machinery to build artificial structures at the nanoscale using the natural ability of pairs of DNA molecules to assemble into complex structures. Such "DNA origami," first developed at the California Institute of Technology,* could provide a means of assembling complex nanostructures such as semiconductor devices, sensors and drug delivery systems, from the bottom up.

While most researchers in the field are working to demonstrate what's possible, scientists at the National Institute of Standards and Technology (NIST) are seeking to determine what's practical.**

According to NIST researcher Alex Liddle, it's a lot like building with LEGOssome patterns enable the blocks to fit together snugly and stick together strongly and some don't.

"If the technology is actually going to be useful, you have to figure out how well it works," says Liddle. "We have determined what a number of the critical factors are for the specific case of assembling nanostructures using a DNA-origami template and have shown how proper design of the desired nanostructures is essential to achieving good yield, moving, we hope, the technology a step forward."

In DNA origami, researchers lay down a long thread of DNA and attach "staples" comprised of complementary strands that bind to make the DNA fold up into various shapes, including rectangles, squares and triangles. The shapes serve as a template onto which nanoscale objects such as nanoparticles and quantum dots can be attached using strings of linker molecules.

The NIST researchers measured how quickly nanoscale structures can be assembled using this technique, how precise the assembly process is, how closely they can be spaced, and the strength of the bonds between the nanoparticles and the DNA origami template.

What they found is that a simple structure, four quantum dots at the corners of a 70-nanometer by 100-nanometer origami rectangle, takes up to 24 hours to self-assemble with an error rate of about 5 percent.

Other patterns that placed three and four dots in a line through the middle of the origami template were increasingly error prone. Sheathing the dots in biomaterials, a necessity for attaching them to the template, increases their effective diameter. A wider effective diameter (about 20 nanometers) limits how closely the dots can be positioned and also increases their tendency to interfere with one another during self-assembly, leading to higher error rates and lower bonding strength. This trend was especially pronounced for the four-dot patterns.

"Overall, we think that this process is good for building structures for biological applications like sensors and drug delivery, but it might be a bit of a stretch when applied to semiconductor device manufacturingthe distances can't be made small enough and the error rate is just too high," says Liddle.


'/>"/>

Contact: Mark Esser
mark.esser@nist.gov
301-975-8735
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. Shape, fit of reproductive organs evolve quickly and in concert, leaving size behind
2. Researchers find best routes to self-assembling 3-D shapes
3. Dramatic diversity of columbine flowers explained by a simple change in cell shape
4. Bats show ability to change their ear shapes, making their hearing more flexible
5. Crater shapes explained, how carnivorous plants bite, and doubts about faster-than-light neutrinos
6. Long bone shape: A family affair
7. Shape memory materials ready for mass production
8. Scripps Research scientists pinpoint shape-shifting mechanism critical to protein signaling
9. Research offers new way to target shape-shifting proteins
10. UBC researchers discover key mechanism that regulates shape and growth of plants
11. What shapes a bone?
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
The shape of things to come: NIST probes the promise of nanomanufacturing using DNA origami
(Date:12/15/2016)... , December 15, 2016 Arvato ... an agreement with NuData Security, an award-winning international ... will enable clients to focus on good customer experience, balancing ... regulation. ... In order to provide a one-stop fraud prevention suite, Arvato ...
(Date:12/15/2016)... 2016 Advancements in biometrics will ... and wellbeing (HWW), and security of vehicles ... passenger vehicles begin to feature fingerprint recognition, ... beat monitoring, brain wave monitoring, stress detection, ... pulse detection. These will be driven by ...
(Date:12/12/2016)... Dec. 12, 2016  Researchers at Trinity College, ... graphene by combining the material with Silly Putty. The ... pressure detector able to sense pulse, blood pressure, ... spider.  The research team,s findings ... read here:  http://science.sciencemag.org/content/354/6317/1257 ...
Breaking Biology News(10 mins):
(Date:1/18/2017)... , Jan. 18, 2017 /PRNewswire/ - SQI ... sciences and diagnostics company that develops and commercializes ... ("SQI" or the "Company"), today announced that ... Inc. ("Kingsdale"), has resigned from its Board of ... changes to securities regulations that have limited both ...
(Date:1/17/2017)... ... January 17, 2017 , ... ... Factor (RF) to its VALIDATE® SP2 calibration verification / linearity test kit. VALIDATE® ... serum base. Each VALIDATE® SP2 kit is prepared using the CLSI recommended “equal ...
(Date:1/17/2017)... The Global Implantable Biomaterials Market is ... 7.5% over the next decade to reach approximately ... trends that the market is witnessing include increasing ... transplant surgeries and medical implants and technological advancements. ... into immunomodulatory biomaterials, natural, polymers, hydrogels and ceramics. ...
(Date:1/17/2017)... -- Roka Bioscience, Inc. (NASDAQ: ROKA ), a molecular ... of foodborne pathogens today announced the appointment of Mary Duseau ... , the Company,s President and CEO since 2009, who will assume ... changes are effective today. In addition, Ms. Duseau will ... ...
Breaking Biology Technology: