Navigation Links
The photonic beetle

SALT LAKE CITY Researchers have been unable to build an ideal photonic crystal to manipulate visible light, impeding the dream of ultrafast optical computers. But now, University of Utah chemists have discovered that nature already has designed photonic crystals with the ideal, diamond-like structure: They are found in the shimmering, iridescent green scales of a beetle from Brazil.

It appears that a simple creature like a beetle provides us with one of the technologically most sought-after structures for the next generation of computing, says study leader Michael Bartl, an assistant professor of chemistry and adjunct assistant professor of physics at the University of Utah. Nature has simple ways of making structures and materials that are still unobtainable with our million-dollar instruments and engineering strategies.

The study by Bartl, University of Utah chemistry doctoral student Jeremy Galusha and colleagues is set to be published later this week in the journal Physical Review E.

The beetle is an inch-long weevil named Lamprocyphus augustus. The discovery of its scales crystal structure represents the first time scientists have been able to work with a material with the ideal or champion architecture for a photonic crystal.

Nature uses very simple strategies to design structures to manipulate light structures that are beyond the reach of our current abilities, Galusha says.

Bartl and Galusha now are trying to design a synthetic version of the beetles photonic crystals, using scale material as a mold to make the crystals from a transparent semiconductor.

The scales cant be used in technological devices because they are made of fingernail-like chitin, which is not stable enough for long-term use, is not semiconducting and doesnt bend light adequately.

The University of Utah chemists conducted the study with coauthors Lauren Richey, a former Springville High School student now attending Brigham Young University; BYU biology Professor John Gardner; and Jennifer Cha, of IBMs Almaden Research Center in San Jose, Calif.

Quest for the Ideal or Champion Photonic Crystal

Researchers are seeking photonic crystals as they aim to develop optical computers that run on light (photons) instead of electricity (electrons). Right now, light in near-infrared and visible wavelengths can carry data and communications through fiberoptic cables, but the data must be converted from light back to electricity before being processed in a computer.

The goal still years away is an ultrahigh-speed computer with optical integrated circuits or chips that run on light instead of electricity.

You would be able to solve certain problems that we are not able to solve now, Bartl says. For certain problems, an optical computer could do in seconds what regular computers need years for.

Researchers also are seeking ideal photonic crystals to amplify light and thus make solar cells more efficient, to capture light that would catalyze chemical reactions, and to generate tiny laser beams that would serve as light sources on optical chips.

Photonic crystals are a new type of optical materials that manipulate light in non-classic ways, Bartl says. Some colors of light can pass through a photonic crystal at various speeds, while other wavelengths are reflected as the crystal acts like a mirror.

Bartl says there are many proposals for how light could be manipulated and controlled in new ways by photonic crystals, however we still lack the proper materials that would allow us to create ideal photonic crystals to manipulate visible light. A material like this doesnt exist artificially or synthetically.

The ideal photonic crystal dubbed the champion crystal was described by scientists elsewhere in 1990. They showed that the optimal photonic crystal one that could manipulate light most efficiently would have the same crystal structure as the lattice of carbon atoms in diamond. Diamonds cannot be used as photonic crystals because their atoms are packed too tightly together to manipulate visible light.

When made from an appropriate material, a diamond-like structure would create a large photonic bandgap, meaning the crystalline structure prevents the propagation of light of a certain range of wavelengths. Materials with such bandgaps are necessary if researchers are to engineer optical circuits that can manipulate visible light.

On the Path of the Beetle: From BYU to Belgium and Brazil

The new study has its roots in Richeys science fair project on iridescence in biology when she was a student at Utahs Springville High School. Gardners group at BYU was helping her at the same time Galusha was using an electron microscope there and learned of Richeys project.

Richey wanted to examine an iridescent beetle, but lacked a complete specimen. So the researchers ordered Brazils Lamprocyphus augustus from a Belgian insect dealer.

The beetles shiny, sparkling green color is produced by the crystal structure of its scales, not by any pigment, Bartl says. The scales are made of chitin, which forms the external skeleton, or exoskeleton, of most insects and is similar to fingernail material. The scales are affixed to the beetles exoskeleton. Each measures 200 microns (millionths of a meter) long by 100 microns wide. A human hair is about 100 microns thick.

Green light which has a wavelength of about 500 to 550 nanometers, or billionths of a meter cannot penetrate the scales crystal structure, which acts like mirrors to reflect the green light, making the beetle appear iridescent green.

Bartl says the beetle was interesting because it was iridescent regardless of the angle from which it was viewed unlike most iridescent objects and because a preliminary electron microscope examination showed its scales did not have the structure typical of artificial photonic crystals.

The color and structure looked interesting, Bartl says. The question was: What was the exact three-dimensional structure that produces these unique optical properties"

The Utah teams study is the first to show that just as atoms are arranged in diamond crystals, so is the chitin structure of beetle scales, he says.

Galusha determined the 3-D structure of the scales using a scanning electron microscope. He cut a cross section of a scale, and then took an electron microscope image of it. Then he used a focused ion beam sort of a tiny sandblaster that shoots a beam of gallium ions to shave off the exposed end of the scale, and then took another image, doing so repeatedly until he had images of 150 cross-sections from the same scale.

Then the researchers stacked the images together in a computer, and determined the crystal structure of the scale material: a diamond-like or champion architecture, but with building blocks of chitin and air instead of the carbon atoms in diamond.

Next, Galusha and Bartl used optical studies and theory to predict optical properties of the scales structure. The prediction matched reality: green iridescence.

Many iridescent objects appear that way only when viewed at certain angles, but the beetle remains iridescent from any angle. Bartl says the way the beetle does that is an ingenious engineering strategy that approximates a technology for controlling the propagation of visible light.

A single beetle scale is not a continuous crystal, but includes some 200 pieces of chitin, each with the diamond-based crystal structure but each oriented a different direction. So each piece reflects a slightly different wavelength or shade of green.

Each piece is too small to be seen individually by your eye, so what you see is a composite effect, with the beetle appearing green from any angle, Bartl explains.

Scientists dont know how the beetle uses its color, but because it is an unnatural green, its likely not for camouflage, Bartl says. It could be to attract mates.


Contact: Lee Siegel
University of Utah

Related biology news :

1. Sex is thirst-quenching for female beetles
2. Mountain pine beetle: Canadas new government delivers
3. Japanese beetle may help fight hemlock-killing insect
4. Minister Lunn to attend Union of BC Municipalities Pine Beetle Conference
5. Beetle dung helps forests recover from fire
6. UBC discovery unlocks tree genetics, gives new hope for pine beetle defense
7. Whirligig beetle gets rock n roll legendary name
8. K-State contributions to red flour beetle genome sequencing featured in March 27 issue of Nature
9. The beetles genome sequenced for the first time
10. Small desert beetle found to engineer ecosystems
11. Armed beetles find a mate, whatever their size
Post Your Comments:
Related Image:
The photonic beetle
(Date:10/6/2015)... MATEO, Calif. , Oct. 6, 2015 /PRNewswire/ ... company, today announced enhancements to its software portfolio ... expression analysis kit for differential expression in eukaryotes. ... Platform, which is a cloud-based genomic analysis solution ... advance scientific discovery from next-generation sequencing efforts. ...
(Date:9/30/2015)... SACRAMENTO, Calif. , Sept. 30, 2015  With ... and the number of new SCIs estimated to reach ... like Southern California Resource Services for Independent Living ... 28 ILCs in California opening ... a range of programs and services, notably assistive technology ...
(Date:9/29/2015)... , Sept. 29, 2015  iDAvatars is excited to be ... its product to market. The official announcement was recently made ... event in San Francisco , where ... powered by IBM Watson. "It is both an ... 100 companies to bring to market the cognitive power of ...
Breaking Biology News(10 mins):
(Date:10/13/2015)... and TORONTO , Oct. 13, 2015 ... announced that it has entered into a non-binding Letter of ... private Israeli company that has developed a proprietary cooling technology ... to varicoceles. the United States ... between the ages of 25 and 44 diagnosed as infertile.  ...
(Date:10/13/2015)... ... October 13, 2015 , ... Clinovo recently appointed Jeff Parr and Ed ... growing clinical data solutions business. , Jeff Parr has spent the past decade providing ... Avery Dennison, Thermo Fisher, and Ab Sciex to name a few. He is ...
(Date:10/13/2015)... ... ... Proove Biosciences, a commercial and research leader ... Medicine of the University of Southern California (USC) Pain Center to study ... Clinical Objectives Linking Genotypic and Phenotypic Association with Pain Outcomes) is one of ...
(Date:10/13/2015)... the United States , Canada ... 14% of all new cases of kidney cancer.   --> ... and Europe .  PRCC represents about 14% ... Hutchison China MediTech Limited ("Chi-Med") (AIM: HCM) today announces that Hutchison ... ("AstraZeneca") have completed enrolment in a global Phase II study of ...
Breaking Biology Technology: