Navigation Links
The machinery for recombination is part of the chromosome structure
Date:8/9/2011

221.10.254.64

This release is available in German.

During the development of gametes, such as egg and sperm cells in humans, chromosomes are broken and rearranged at many positions. Using state of the art technology, the research group of Franz Klein, professor for genetics at the Max F. Perutz Laboratories of the University of Vienna, has analyzed this process at high resolution. The surprising observations regarding the mechanism of meiosis are now published in the scientific top-journal Cell.

Without meiosis there would be no sexual reproduction, as germ cells have to be generated in this specialized cell division. Meiosis results in daughter cells containing a single, complete set of chromosomes, while body cells contain two sets. During fertilization, when sperm and egg fuse, their sets of chromosomes are combined to form a diploid embryo to close the cycle.

Enigmatic meiosis

There are 46 chromosomes in every human cell, 23 maternal and 23 paternal ones. When germ cells are produced, one aspect of the reduction in chromosome numbers comes from merging maternal and paternal chromosomes to form a single daughter chromosome a mechanisms called recombination. "The more we learn about meiosis, the more mysterious it becomes", says Franz Klein from the Department for Chromosome Biology of the University of Vienna. "It is surprising that maternal and paternal chromosomes find each other at all. Because at the time of interaction all chromosomes have generated a sister and are tightly connected with her like a Siamese twin. Normally, in non-meiotic cells, chromosomes only interact and exchange with the sister chromosome. However, during the development of germ cells, only the exchange between parental chromosomes can guarantee the production of daughter cells with the right number of chromosomes", explains Klein.

Nano-view of the chromosome

Franz Klein and his research team have analyzed components of the protein machinery, which initiates recombination by DNA-breakage. They created a high resolution map of the chromosomes and marked the interaction sites with those proteins. "Thanks to DNA microarray-technology, we get a resolution in the nanometer range, with insights unimaginable before", says Klein. The researchers were surprised to find the DNA-breaking machine tightly associated with chromosomal axis regions, instead of being soluble - an observation with far reaching consequences.

Disposable machines

One of the many riddles in meiosis was how breaks on chromosomes impede the occurrence of other breaks in their vicinity. Earlier research had shown that each individual DNA-breakage complex only works a single time. "As we now know that these machines are anchored, we understand why there is preferentially a single break per region. The locally bound machine has fired and other machines can't get there as they are anchored to other chromosomal regions", explains Klein.

When chromosomes are out of shape

Healthy chromosomes can form DNA loops, which are, in meiosis, connected by a protein axis. Defective genes can cause chromosomes to lose this shape. "No one could understand why the shape of chromosomes influences the function of the DNA-break machines. Now we know that these machines have to anchor between loops on the chromosome axis. If their loop-environment changes they anchor in different regions or lose functionality altogether", says Klein.

Hyperactive sister

Sister chromosomes are connected like Siamese twins along the chromosome axis, where the DNA-break machines are anchored. It was very mysterious, how the sister chromosome is prevented to take part in the repair of DNA breaks during meiosis, despite being so close to the damage. A special feature of meiosis is the formation of a zone along the chromosome axis that inhibits recombination.

Franz Klein concludes: "We think that the DNA-break machines are anchored at the axis to position the breaks right within the recombination inhibiting zone. This may attract the sister chromosome loop, which remains trapped in the recombination inhibiting zone by one of the two ends flanking the break, while the second end docks off to form a search tentacle for finding the paternal chromosome. We have evidence for many details of this scenario but most importantly, the inhibition of the involvement of the sister breaks down, if the anchoring of the DNA-break machines is defective. This indicates that anchoring may be indeed a key mechanism to control the sister. The result of a sister, hyperactive for DNA-break repair in meiosis is the death or severe impairment of the developing embryo."


'/>"/>

Contact: Franz Klein
franz.klein@univie.ac.at
43-142-775-6220
University of Vienna
Source:Eurekalert  

Related biology news :

1. CSHL scientists discover new way in which ubiquitin modifies transcriptional machinery
2. Rots unique wood degrading machinery to be harnessed for better biofuels production
3. Cells use import machinery to export their goods as well
4. Xie Lab uncovers molecular machinery related to stem cell fate
5. Study details machinery of immune protection against inflammatory diseases like colitis
6. Finger-trap tension stabilizes cells chromosome-separating machinery
7. Keeping chromosomes from cuddling up
8. How chromosomes meet in the dark -- Switch that turns on X chromosome matchmaking
9. Mayo: Variants in gene on X chromosome associated with increased susceptibility to Alzheimers
10. Y chromosome and surname study challenges infidelity myth
11. Evolutionary origin of bacterial chromosomes revealed
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
The machinery for recombination is part of the chromosome structure
(Date:3/15/2016)... 15, 2016 --> ... Transparency Market Research "Digital Door Lock Systems Market - Global ... 2023," the global digital door lock systems market in terms ... and is forecast to grow at a CAGR of 31.8% ... and medium enterprises (MSMEs) across the world and high industrial ...
(Date:3/14/2016)... NXTD ) ("NXT-ID" or the "Company"), a company ... of a new series of commercials on Time Warner Cable ... .  The commercials will air on Bloomberg TV, Fox Business ... show. --> NXTD ) ("NXT-ID" or the "Company"), ... the airing of a new series of commercials on Time ...
(Date:3/11/2016)... March 11, 2016 http://www.apimages.com ) - ... Picture is available at AP Images ( http://www.apimages.com ) - ... be used to produce the new refugee identity cards. DERMALOG will ... at CeBIT in Hanover next week.   ... will be used to produce the new refugee identity cards. DERMALOG ...
Breaking Biology News(10 mins):
(Date:5/23/2016)... Ohio (PRWEB) , ... May 23, 2016 , ... ... Trends That Will Drive Precision Farming in 2017 and Beyond. The paper outlines ... practitioners in the precision ag industry. , “We’ve witnessed a lot of highs ...
(Date:5/23/2016)... , May 23, 2016 Oxitec ... 25 th at 10:15 a.m. ET before the United ... role genetically engineered mosquitos can play in controlling the spread ... of the Zika virus.      (Logo: http://photos.prnewswire.com/prnh/20150630/227348 ... male mosquito with a self-limiting gene. Trials in ...
(Date:5/23/2016)... ... May 23, 2016 , ... RoviSys, a ... based in Aurora, Ohio, has broken ground on a new building in Holly ... Park area, this new location solidifies a commitment to business in the region. ...
(Date:5/22/2016)... NC (PRWEB) , ... May 22, 2016 , ... Doctors ... weapons in combating the asbestos cancer, malignant mesothelioma. Surviving Mesothelioma has just posted an ... Researchers in the University of Rome’s Department of Clinical Sciences and Translational Medicine evaluated ...
Breaking Biology Technology: