Navigation Links
The lock shapes the key
Date:2/15/2011

This release is available in German.

Interactions between proteins are of fundamental importance for a number of processes in virtually every living cell. However, in order for the proteins to carry out any biological function, they must first assume their specific three-dimensional shape. A number of reactions have been described in recent years, where one of the interaction partners does not assume its active structure until the actual binding process commences. It was still a great mystery, though, how the binding partners could actually recognize such unstructured proteins.

Scientists led by Professor Thomas Kiefhaber (TUM) posed the question of whether local properties are sufficient for the recognition to take place or whether the unstructured binding partner first had to assume a specific spatial structure. Possible candidates were regularly structural elements such as coiled α-helices or β-pleated sheets, in which internal hydrogen bonds are formed.

In collaboration with Professor Gunter Fischer's research group at the Max Planck Research Unit for Enzymology of Protein Folding Halle/Saale, the scientists developed a novel method for observing the formation of individual hydrogen bonds in the course of a binding process.

The model system was the enzyme ribonuclease S, which in its active form comprises the S-protein and an α-helical S-peptide. While the S-protein has a defined three-dimensional shape, the S-peptide on its own is initially unfolded. The scientists attempted to determine whether the S-protein recognizes the unstructured S-peptide or a small fraction of peptide molecules in their helical conformation. To this end, the oxygen atoms in the peptide bonds were replaced by sulfur atoms via chemical protein synthesis, causing individual hydrogen bonds to become destabilized.

Time-based measurements of the binding process of the altered peptide have now shown that the hydrogen bonds in the S-peptide, and as such in the α-helical structure, do not form until after the bonding to the S-protein. Thus, they cannot play a role in the recognition process. Protein-protein recognition in this case takes place via hydrophobic interaction of the S-protein with two spatially clearly defined areas of the unstructured S-peptide.

These results are of fundamental importance for understanding the mechanism of protein-protein interactions. In the future, this method can be used to examine in detail the structure formation in proteins in other systems, as well.


'/>"/>

Contact: Dr. Andreas Battenberg
battenberg@zv.tum.de
49-892-891-0510
Technische Universitaet Muenchen
Source:Eurekalert

Related biology news :

1. Scientists clock on to how sunlight shapes daily rhythms
2. Oil spill reshapes sweeping new study of oyster reefs -- Virginia to Florida
3. Study finds that long-distance migration shapes butterfly wings
4. Yes, ecology shapes evolution, but guppies show reverse also true
5. Caltech and UCSD researchers shed light on how proteins find their shapes
6. Grape shapes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/5/2017)... Allen Institute for Cell Science today announces the launch ... dynamic digital window into the human cell. The website ... deep learning to create predictive models of cell organization, ... suite of powerful tools. The Allen Cell Explorer will ... resources created and shared by the Allen Institute for ...
(Date:4/5/2017)... LONDON , April 4, 2017 KEY ... is anticipated to expand at a CAGR of 25.76% ... neurodegenerative diseases is the primary factor for the growth ... full report: https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The ... of product, technology, application, and geography. The stem cell ...
(Date:4/3/2017)... 2017  Data captured by IsoCode, IsoPlexis ... a statistically significant association between the potency ... and objective response of cancer patients post-treatment. ... whether cancer patients will respond to CAR-T ... as to improve both pre-infusion potency testing and ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... SANTA BARBARA, CALIFORNIA (PRWEB) , ... October 10, ... ... risk management, technological innovation and business process optimization firm for the life sciences ... the BoxWorks conference in San Francisco. , The presentation, “Automating GxP ...
(Date:10/9/2017)... , Oct. 9, 2017  BioTech Holdings ... mechanism by which its ProCell stem cell therapy ... limb ischemia.  The Company, demonstrated that treatment with ... of limbs saved as compared to standard bone ... molecule HGF resulted in reduction of therapeutic effect.  ...
(Date:10/9/2017)... N.C. (PRWEB) , ... October 09, 2017 , ... At ... announced Dr. Christopher Stubbs, a professor in Harvard University’s Departments of Physics and Astronomy, ... Stubbs was a member of the winning team for the 2015 Breakthrough Prize in ...
(Date:10/9/2017)... ... October 09, 2017 , ... ... 5, 2017, in the medical journal, Epilepsia, Brain Sentinel’s SPEAC® System which ... video EEG, in detecting generalized tonic-clonic seizures (GTCS) using surface electromyography (sEMG). ...
Breaking Biology Technology: