Navigation Links
The lock shapes the key
Date:2/15/2011

This release is available in German.

Interactions between proteins are of fundamental importance for a number of processes in virtually every living cell. However, in order for the proteins to carry out any biological function, they must first assume their specific three-dimensional shape. A number of reactions have been described in recent years, where one of the interaction partners does not assume its active structure until the actual binding process commences. It was still a great mystery, though, how the binding partners could actually recognize such unstructured proteins.

Scientists led by Professor Thomas Kiefhaber (TUM) posed the question of whether local properties are sufficient for the recognition to take place or whether the unstructured binding partner first had to assume a specific spatial structure. Possible candidates were regularly structural elements such as coiled α-helices or β-pleated sheets, in which internal hydrogen bonds are formed.

In collaboration with Professor Gunter Fischer's research group at the Max Planck Research Unit for Enzymology of Protein Folding Halle/Saale, the scientists developed a novel method for observing the formation of individual hydrogen bonds in the course of a binding process.

The model system was the enzyme ribonuclease S, which in its active form comprises the S-protein and an α-helical S-peptide. While the S-protein has a defined three-dimensional shape, the S-peptide on its own is initially unfolded. The scientists attempted to determine whether the S-protein recognizes the unstructured S-peptide or a small fraction of peptide molecules in their helical conformation. To this end, the oxygen atoms in the peptide bonds were replaced by sulfur atoms via chemical protein synthesis, causing individual hydrogen bonds to become destabilized.

Time-based measurements of the binding process of the altered peptide have now shown that the hydrogen bonds in the S-peptide, and as such in the α-helical structure, do not form until after the bonding to the S-protein. Thus, they cannot play a role in the recognition process. Protein-protein recognition in this case takes place via hydrophobic interaction of the S-protein with two spatially clearly defined areas of the unstructured S-peptide.

These results are of fundamental importance for understanding the mechanism of protein-protein interactions. In the future, this method can be used to examine in detail the structure formation in proteins in other systems, as well.


'/>"/>

Contact: Dr. Andreas Battenberg
battenberg@zv.tum.de
49-892-891-0510
Technische Universitaet Muenchen
Source:Eurekalert

Related biology news :

1. Scientists clock on to how sunlight shapes daily rhythms
2. Oil spill reshapes sweeping new study of oyster reefs -- Virginia to Florida
3. Study finds that long-distance migration shapes butterfly wings
4. Yes, ecology shapes evolution, but guppies show reverse also true
5. Caltech and UCSD researchers shed light on how proteins find their shapes
6. Grape shapes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/18/2017)... , Jan. 18, 2017 ... company that supports the entire spectrum of clinical ... been another record-breaking year for the organization in ... interest in MedNet,s eClinical products and services. The ... tremendous marketplace success of iMedNet ...
(Date:1/12/2017)... NEW YORK , Jan. 12, 2017  New research ... around the office of the future.  1,000 participants were simply ... last three months which we may consider standard issue.  Insights ... office of 2017 were also gathered from futurists and industry ... and Dr. James Canton .  Some ...
(Date:1/11/2017)... NEW BRUNSWICK, N.J. , Jan. 11, 2017  Michael Johnson, ... from Foundation Venture Capital Group, Inc., has been named to the ... Johnson, 27,  was one of 600 people in 20 fields ... only four percent of the 15,000 applicants were selected. ... He is currently a PhD ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... India , Jan. 19, 2017  Market Research Future has ... Global Market for Liquid Biopsy is growing rapidly and expected to ... Market Highlights ... The Global Liquid Biopsy Market has been assessed as a ... growth figures and boom in the coming future. There has been ...
(Date:1/19/2017)... , Jan 19, 2017 Research and Markets ... has announced the addition of ... Material, Application - Forecast to 2025" report to their ... The report provides a detailed analysis on current and ... forecasts till 2025, using estimated market values as the base numbers ...
(Date:1/19/2017)... and GAITHERSBURG, Md. , Jan. ... and Altimmune, Inc., a privately-held immunotherapeutics company targeting ... definitive agreement for the merger of PharmAthene and ... include Novartis Venture Fund, HealthCap, Truffle Capital and ... fully-integrated and diversified immunotherapeutics company with four clinical ...
(Date:1/19/2017)... ... January 18, 2017 , ... The ... (NIH) to update its Data Sharing Policy. Specifically, the nation’s leading informatics experts, ... subject to the existing policy. AMIA recommended that NIH earmark funding for researchers ...
Breaking Biology Technology: