Navigation Links
The future of biomaterial manufacturing: Spider silk production from bacteria

A new video article in JoVE, the Journal of Visualized Experiments, demonstrates procedures to harvest and process synthetic spider silk from bacteria. The procedure presented in the video article revolutionizes the spider silk purification process by standardizing a key step known as "post-spin." In this step, silk molecules are stretched by a mechanical actuator to increase fiber strength. These mechanical improvements produce uniform spider silk and remove human error from the spinning process. As a result, the synthetic silk is much closer to the natural fibers produced by the female black widow spider than what was previously possible, and the procedure provides a scalable ground work to utilize spider silk in material manufacturing.

Due to their mechanical properties, synthetic spider silks have numerous manufacturing and industrial applications. Of particular interest is the high tensile strength of black widow silk, which is comparable to Kevlar in strength, but is lighter and of a lower density. If scientists could reproduce the mechanical properties of spider spun silk in the laboratory, the material could be used to replace Kevlar, carbon fiber and steel. Increased production of this new biomaterial will have an impact on a wide variety of products where spider silk's properties are valuable, ranging from bulletproof vests and aircraft bodies to bridge cables and medical sutures.

While scientists have been able to produce spider silk with the same biochemical integrity of the natural fibers for some time, it has remained difficult to mimic a spider's "post-spin" techniques. The natural post-spin process stretches the fiber in order to align the fiber molecules, and increases the fiber's tensile strength. To solve this problem, Dr. Craig Vierra from the University of the Pacific developed a technique that removes human variability by using a mechanical actuator. Built by Dr. Vierra and his laboratory group, the mechanical actuator can reliably stretch fibers to a specified length, mimicking the spider's natural post-spin. Dr. Vierra tells us, "The procedure decreases the variance in the mechanical properties that are seen. Before this procedure, there was a tremendous amount of variation in synthetic fibers."

Dr. Vierra continues his work with black widow spiders and synthetic silk production. "We're working on fusing what we've learned here and expanding the procedure en masse." Eventually, the lab aims to make spider silk a renewable resource for material production that may change how we engineer the future. Concerning publication in JoVE, Dr. Vierra notes the decision was made because, "The visual representation is significant because most research articles don't go into the step by step procedure (to collect spider silk). Also, many of the processes need a visual representation to fully grasp."


Contact: Neal Moawed
The Journal of Visualized Experiments

Related biology news :

1. LINDSAY: The future of medical education
2. 50 Years of Watershed Modeling -- Past, Present and Future
3. Stem cell transplantation into mouse cochlea may impact future hearing loss therapies
4. South African daffodils may be a future cure for depression
5. Manipulating chromatin loops to regulate genes may offer future treatments for blood diseases
6. Stanford researchers help predict the oceans of the future with a mini-lab
7. New understanding of terrestrial formation has significant and far reaching future implications
8. Earlier detection of bone loss may be in future
9. Undersea warriors, undersea medicine: The future force
10. Research is ensuring stormwater systems are designed for the future
11. New technologies for a blue future
Post Your Comments:
Related Image:
The future of biomaterial manufacturing: Spider silk production from bacteria
(Date:11/9/2015)... DUBLIN , Nov. 09, 2015 /PRNewswire/ ... announced the addition of the "Global ... to their offering. --> ... "Global Law Enforcement Biometrics Market 2015-2019" ... Research and Markets ( ) ...
(Date:11/4/2015)... New York , November 4, 2015 ... to a new market report published by Transparency Market ... Share, Growth, Trends and Forecast 2015 - 2022", the global ... of US$ 30.3 bn by 2022. The market is ... the forecast period from 2015 to 2022. Rising security ...
(Date:10/29/2015)... 29, 2015   MedNet Solutions , an innovative ... of clinical research, is pleased to announce that it ... (MHTA) as one of only three finalists for a ... Small and Growing" category. The Tekne Awards honor ... superior technology innovation and leadership. iMedNet™ ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... - iCo Therapeutics ("iCo" or "the Company") (TSX-V: ICO) ... quarter ended September 30, 2015. Amounts, unless specified ... under International Financial Reporting Standards ("IFRS"). ... Andrew Rae , President & CEO of iCo ... value enriching for this clinical program, but also ...
(Date:11/24/2015)... /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS) (TSX: AEZ) (the ... the Toronto Stock Exchange, confirms that as of the ... developments that would cause the recent movements in the ... --> About Aeterna Zentaris Inc. ... Aeterna Zentaris is a specialty biopharmaceutical company engaged in ...
(Date:11/24/2015)... ... ... This fall, global software solutions leader SAP and AdVenture Capital brought together ... their BIG ideas to improve health and wellness in their schools. , Now, the ... title of SAP's Teen Innovator, an all-expenses paid trip to Super Bowl 50, and ...
(Date:11/24/2015)... November 24, 2015 --> ... research report released by Transparency Market Research, the global ... a CAGR of 17.5% during the period between 2014 ... - Global Industry Analysis, Size, Volume, Share, Growth, Trends ... prenatal testing market to reach a valuation of US$2.38 ...
Breaking Biology Technology: