Navigation Links
The future of biomaterial manufacturing: Spider silk production from bacteria
Date:7/18/2012

A new video article in JoVE, the Journal of Visualized Experiments, demonstrates procedures to harvest and process synthetic spider silk from bacteria. The procedure presented in the video article revolutionizes the spider silk purification process by standardizing a key step known as "post-spin." In this step, silk molecules are stretched by a mechanical actuator to increase fiber strength. These mechanical improvements produce uniform spider silk and remove human error from the spinning process. As a result, the synthetic silk is much closer to the natural fibers produced by the female black widow spider than what was previously possible, and the procedure provides a scalable ground work to utilize spider silk in material manufacturing.

Due to their mechanical properties, synthetic spider silks have numerous manufacturing and industrial applications. Of particular interest is the high tensile strength of black widow silk, which is comparable to Kevlar in strength, but is lighter and of a lower density. If scientists could reproduce the mechanical properties of spider spun silk in the laboratory, the material could be used to replace Kevlar, carbon fiber and steel. Increased production of this new biomaterial will have an impact on a wide variety of products where spider silk's properties are valuable, ranging from bulletproof vests and aircraft bodies to bridge cables and medical sutures.

While scientists have been able to produce spider silk with the same biochemical integrity of the natural fibers for some time, it has remained difficult to mimic a spider's "post-spin" techniques. The natural post-spin process stretches the fiber in order to align the fiber molecules, and increases the fiber's tensile strength. To solve this problem, Dr. Craig Vierra from the University of the Pacific developed a technique that removes human variability by using a mechanical actuator. Built by Dr. Vierra and his laboratory group, the mechanical actuator can reliably stretch fibers to a specified length, mimicking the spider's natural post-spin. Dr. Vierra tells us, "The procedure decreases the variance in the mechanical properties that are seen. Before this procedure, there was a tremendous amount of variation in synthetic fibers."

Dr. Vierra continues his work with black widow spiders and synthetic silk production. "We're working on fusing what we've learned here and expanding the procedure en masse." Eventually, the lab aims to make spider silk a renewable resource for material production that may change how we engineer the future. Concerning publication in JoVE, Dr. Vierra notes the decision was made because, "The visual representation is significant because most research articles don't go into the step by step procedure (to collect spider silk). Also, many of the processes need a visual representation to fully grasp."


'/>"/>

Contact: Neal Moawed
neal.moawed@jove.com
617-245-0137
The Journal of Visualized Experiments
Source:Eurekalert  

Related biology news :

1. LINDSAY: The future of medical education
2. 50 Years of Watershed Modeling -- Past, Present and Future
3. Stem cell transplantation into mouse cochlea may impact future hearing loss therapies
4. South African daffodils may be a future cure for depression
5. Manipulating chromatin loops to regulate genes may offer future treatments for blood diseases
6. Stanford researchers help predict the oceans of the future with a mini-lab
7. New understanding of terrestrial formation has significant and far reaching future implications
8. Earlier detection of bone loss may be in future
9. Undersea warriors, undersea medicine: The future force
10. Research is ensuring stormwater systems are designed for the future
11. New technologies for a blue future
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
The future of biomaterial manufacturing: Spider silk production from bacteria
(Date:3/30/2017)... -- Trends, opportunities and forecast in this market to ... AFIS, iris recognition, facial recognition, hand geometry, vein recognition, ... industry (government and law enforcement, commercial and retail, health ... and by region ( North America , ... , and the Rest of the World) ...
(Date:3/28/2017)... 28, 2017 The report "Video ... Monitors, Servers, Storage Devices), Software (Video Analytics, VMS), and ... Global Forecast to 2022", published by MarketsandMarkets, the market ... is projected to reach USD 75.64 Billion by 2022, ... The base year considered for the study is 2016 ...
(Date:3/24/2017)... , March 24, 2017 The Controller General ... Controller Mr. Abdulla Algeen have received the prestigious international IAIR ... Continue Reading ... ... picture) and Deputy Controller Abdulla Algeen (small picture on the right) have ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... (PRWEB) , ... October 10, ... ... development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed ... targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in collaboration with ...
(Date:10/10/2017)... SANTA BARBARA, CALIFORNIA (PRWEB) , ... October 10, ... ... risk management, technological innovation and business process optimization firm for the life sciences ... the BoxWorks conference in San Francisco. , The presentation, “Automating GxP ...
(Date:10/9/2017)... ... October 09, 2017 , ... The Giving Tree Wellness Center ... the needs of consumers who are incorporating medical marijuana into their wellness and ... , As operators of two successful Valley dispensaries, The Giving Tree’s two founders, ...
(Date:10/6/2017)... ... 06, 2017 , ... The HealthTech Venture Network (HTVN) is ... fourth annual Conference where founders, investors, innovative practitioners and collaborators are invited to ... showcasing early stage digital health and med tech companies. , This day-long event ...
Breaking Biology Technology: