Navigation Links
The evolution of division of labor
Date:1/24/2012

This release is available in German.

Division of labour is not only a defining feature of human societies but is also omnipresent among the building blocks of biological organisms and is considered a major theme of evolution. Theoretical Biologists Claus Rueffler and Joachim Hermisson from Vienna University in collaboration with Gnter P. Wagner from Yale University identified necessary conditions under which division of labour is favoured by natural selection. The results of their study are published in the Proceedings of the National Academy of Sciences (PNAS).

Most animals and plants consist of a set of building blocks, also called modules. An obvious case in point are higher organisms that are collections of many cells of different types. The modular structure of biological organization is also visible at many other levels: several plant organs are derived from leafs, insects have segmented bodies and vertebrates have different appendages. Our teeth are yet another example for this modular structure.

Evolution Need not Lead to Specialization

What jumps to the eyes is that modules are commonly not identical but differ in form and function as is clearly visible in for instance the case of incisive and molars. Such modules are specialists, which together with other specialist modules collaborate within an organism. This possibility for division of labour is regarded as one of the main advantages of a modular structure and a major trend in evolution. On the other hand, many examples for organisms exist that consist of identical modules that jointly fulfil more than a single task. For example, some green algae are colonies of a few dozens of undifferentiated cells and each cell contributes to feeding, locomotion and reproduction. Similarly, millipedes and many primitive crustaceans consist of many undifferentiated body segments.

Conditions for Division of Labour derived from a Mathematical Model

"Under which conditions can we expect that division of labour evolves among the modules of an organism and when is functional specialization of modules prohibited? The answer to this question determines our understanding of why complex organisms have evolved in the first place and why not all organisms consist of collections of undifferentiated cells", explains Rueffler, lead author of the study from the University of Vienna. Rueffler looked at this problem by means of a mathematical model. Contrary to previous efforts concerning this subject, his model is not geared towards a specific system but concentrates on the underlying commonalities that are shared by all systems consisting of multifunctional modules. In this way he and his co-authors aim at pinpointing general underlying principles.

Specialists versus Generalists

Starting point is the observation that modules cannot be specialized simultaneously for alternative tasks but are limited by trade-offs: incisive are good at breaking up food items into pieces but not at grinding up food items into small pieces ready for digestion. The opposite holds true for molars. "The model answers the question, under which conditions an organism consisting of differentiated modules specialized for alternative tasks is superior to an organism consisting of generalist modules that can fulfil more than one task but only suboptimally so," argues Rueffler.

Causes for the Evolution of Division of Labour

A result of the model is that under very general assumptions the conditions leading to division of labour can be surprisingly restrictive. The reason is that due to trade-offs a high degree of specialization for one can be very costly in terms of loss of performance in alternative tasks. Furthermore, generalists have an advantage when damage to an organism resulting in the loss of specialized modules leads to a complete loss of function. Therefore, if division of labour has evolved strong alternative factors have to be present that act in favour of functional differentiation. Division of labour is for example to be expected when modules are predisposed to contribute to a particular function solely due to their position within the organism. Such "positional effects" were surely drivers in for example the differentiation of teeth. Another factor favouring a division of labour are synergistic effects between differentiated modules such that the performance of an organism is more than just the sum of the contribution of its parts.

The results of the study make plausible why despite a long evolutionary history still organisms of low complexity consisting of only a few cell types and with few or without any internal organs exist up to this day. The findings can now be used to study evolutionary trends in biological complexity across phylogenies.


'/>"/>

Contact: Claus Rueffler
claus.rueffler@univie.ac.at
43-142-775-0774
University of Vienna
Source:Eurekalert  

Related biology news :

1. Advantages of living in the dark: The multiple evolution events of blind cavefish
2. New study sheds light on evolutionary origin of oxygen-based cellular respiration
3. UF study: Rules may govern genome evolution in young plant species
4. When it comes to accepting evolution, gut feelings trump facts
5. University of Minnesota biologists replicate key evolutionary step
6. 2-timing and hybrids: RUB researchers look back on 100 million years of evolution
7. Revolutionary surgical technique for perforations of the eardrum
8. Breakthrough model reveals evolution of ancient nervous systems through seashell colors
9. Evolution of complexity recreated using molecular time travel
10. Over 65 million years North American mammal evolution has tracked with climate change
11. Head-first diversity shown to drive vertebrate evolution
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
The evolution of division of labor
(Date:6/15/2016)... , June 15, 2016 ... market report titled "Gesture Recognition Market by Application Market - Global ... 2016 - 2024". According to the report, the  global ... billion in 2015 and is estimated to grow ... 48.56 billion by 2024.  Increasing application ...
(Date:6/2/2016)... The Department of Transport Management (DOTM) ... million US Dollar project, for the , Supply ... Enrolment, and IT Infrastructure , to ... implementation of Identity Management Solutions. Numerous renowned international vendors participated ... was selected for the most compliant and innovative ...
(Date:5/20/2016)... -- VoiceIt is excited to announce its new marketing ... working together, VoiceIt and VoicePass will offer an ... slightly different approaches to voice biometrics, collaboration between ... Both companies ... "This marketing and technology partnership allows VoiceIt ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 2016   EpiBiome , a precision microbiome engineering ... debt financing from Silicon Valley Bank (SVB). The financing ... advance its drug development efforts, as well as purchase ... "SVB has been an incredible strategic partner to us ... bank would provide," said Dr. Aeron Tynes Hammack ...
(Date:6/23/2016)... Ky. , June 23, 2016 ... two Phase 1 clinical trials of its complement ... placebo-controlled, single and multiple ascending dose studies designed ... pharmacodynamics (PD) of subcutaneous injection in healthy adult ... subcutaneously (SC) either as a single dose (ranging ...
(Date:6/23/2016)... San Francisco, CA (PRWEB) , ... June 23, ... ... capture (EDC) software, is exhibiting at the Pennsylvania Convention Center and will showcase ... DIA Annual conference. ClinCapture will also be presenting a scientific poster on Disrupting ...
(Date:6/23/2016)... June 23, 2016 ReportsnReports.com ... report to its pharmaceuticals section with historic and ... and much more. Complete report on ... pages, profiling 15 companies and supported with 261 ... http://www.reportsnreports.com/reports/601420-global-cell-culture-media-industry-2016-market-research-report.html . The Global Cell ...
Breaking Biology Technology: